CLEPS: A new protocol for cloud aqueous phase oxidation of VOC mechanisms

Author:

Mouchel-Vallon Camille,Deguillaume Laurent,Monod Anne,Perroux Hélène,Rose ClémenceORCID,Ghigo Giovanni,Long Yoann,Leriche Maud,Aumont BernardORCID,Patryl Luc,Armand Patrick,Chaumerliac Nadine

Abstract

Abstract. Organic compounds of both anthropogenic and natural origin are ubiquitous in the multiphasic atmospheric medium. Their transformation in the atmosphere affects air quality and the global climate. Modelling provides a useful tool to investigate the chemistry of organic compounds in the tropospheric multiphase system. While several comprehensive explicit mechanisms exist in the gas phase, explicit mechanisms are much more limited in the aqueous phase. Recently, new empirical methods have been developed to estimate HO• reaction rates in the aqueous phase: structure-activity relationships (SARs) provide global rate constants and branching ratios for HO• abstraction from and addition to atmospheric organic compounds. Based on these SARs, a new detailed aqueous-phase mechanism, named the cloud explicit physico-chemical scheme (CLEPS), to describe the oxidation of hydrosoluble organic compounds resulting from isoprene oxidation is proposed. In this paper, a protocol based on reviewed experimental data and evaluated prediction methods is described in detail. The current version of the mechanism includes approximately 850 aqueous reactions and 465 equilibria. Inorganic reactivity is described for 67 chemical species (e.g., transition metal ions, HxOy, sulphur species, nitrogen species, and chlorine). For organic compounds, 87 chemical species are considered in the mechanism, corresponding to 657 chemical forms that are individually followed (e.g., hydrated forms, anionic forms). This new aqueous-phase mechanism is coupled with the detailed gas phase mechanism MCM v3.3.1 through mass transfer parameterization for the exchange between the gas phase and aqueous phase. The GROMHE SAR enables the evaluation of the Henry's law constants for undocumented organic compounds. The resulting multiphase mechanism is implemented in a model based on the Dynamically Simple Model for Atmospheric Chemical Complexity (DSMACC) using the Kinetic PreProcessor (KPP). This model allows simulation of the time evolution of the concentrations of each individual chemical species in addition to detailed time-resolved flux analyses. The variable photolysis in both phases is calculated using the TUV 4.5 radiative transfer model. To evaluate our chemical mechanism, an idealized cloud event with fixed microphysical cloud parameters is simulated. The simulation is performed for a low-NOx situation. The results indicate the formation of oxidized mono- and diacids in the aqueous phase, as well as a significant influence on the gas phase chemistry and composition. For this particular simulation, the aqueous phase mechanism is responsible for the efficient fragmentation and functionalization of organic compounds. This new cloud chemistry model allows for the analysis of individual aqueous sub systems and can be used to analyze the results from cloud chamber experiments and field campaigns.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3