Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events

Author:

Tetoni EleniORCID,Ewald FlorianORCID,Hagen MartinORCID,Köcher GregorORCID,Zinner Tobias,Groß Silke

Abstract

Abstract. Ice growth processes within clouds affect the type and amount of precipitation. Hence, the importance of an accurate representation of ice microphysics in numerical weather and numerical climate models has been confirmed by several studies. To better constrain ice processes in models, we need to study ice cloud regions before and during monitored precipitation events. For this purpose, two radar instruments facing each other were used to collect complementary measurements. The C-band POLDIRAD weather radar from the German Aerospace Center (DLR) in Oberpfaffenhofen and the Ka-band MIRA-35 cloud radar from the Ludwig Maximilians University of Munich (LMU) were used to monitor stratiform precipitation in the vertical cross-sectional area between the two instruments. The logarithmic difference of radar reflectivities at two different wavelengths (54.5 and 8.5 mm), known as the dual-wavelength ratio, was exploited to provide information about the size of the detected ice hydrometeors, taking advantage of the different scattering behavior in the Rayleigh and Mie regime. Along with the dual-wavelength ratio, differential radar reflectivity measurements from POLDIRAD provided information about the apparent shape of the detected ice hydrometeors. Scattering simulations using the T-matrix method were performed for oblate and horizontally aligned prolate ice spheroids of varying shape and size using a realistic particle size distribution and a well-established mass–size relationship. The combination of dual-wavelength ratio, radar reflectivity, and differential radar reflectivity measurements as well as scattering simulations was used for the development of a novel retrieval for ice cloud microphysics. The development of the retrieval scheme also comprised a method to estimate the hydrometeor attenuation in both radar bands. To demonstrate this approach, a feasibility study was conducted on three stratiform snow events which were monitored over Munich in January 2019. The ice retrieval can provide ice particle shape, size, and mass information which is in line with differential radar reflectivity, dual-wavelength ratio, and radar reflectivity observations, respectively, when the ice spheroids are assumed to be oblates and to follow the mass–size relation of aggregates. When combining two spatially separated radars to retrieve ice microphysics, the beam width mismatch can locally lead to significant uncertainties. However, the calibration uncertainty is found to cause the largest bias for the averaged retrieved size and mass. Moreover, the shape assumption is found to be equally important to the calibration uncertainty for the retrieved size, while it is less important than the calibration uncertainty for the retrieval of ice mass. A further finding is the importance of the differential radar reflectivity for the particle size retrieval directly above the MIRA-35 cloud radar. Especially for that observation geometry, the simultaneous slantwise observation from the polarimetric weather radar POLDIRAD can reduce ambiguities in retrieval of the ice particle size by constraining the ice particle shape.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3