Evaluating uncertainty in sensor networks for urban air pollution insights

Author:

Peters Daniel R.ORCID,Popoola Olalekan A. M.ORCID,Jones Roderic L.,Martin Nicholas A.,Mills Jim,Fonseca Elizabeth R.ORCID,Stidworthy Amy,Forsyth Ella,Carruthers David,Dupuy-Todd Megan,Douglas Felicia,Moore Katie,Shah Rishabh U.ORCID,Padilla Lauren E.,Alvarez Ramón A.

Abstract

Abstract. Ambient air pollution poses a major global public health risk. Lower-cost air quality sensors (LCSs) are increasingly being explored as a tool to understand local air pollution problems and develop effective solutions. A barrier to LCS adoption is potentially larger measurement uncertainty compared to reference measurement technology. The technical performance of various LCSs has been tested in laboratory and field environments, and a growing body of literature on uses of LCSs primarily focuses on proof-of-concept deployments. However, few studies have demonstrated the implications of LCS measurement uncertainties on a sensor network's ability to assess spatiotemporal patterns of local air pollution. Here, we present results from a 2-year deployment of 100 stationary electrochemical nitrogen dioxide (NO2) LCSs across Greater London as part of the Breathe London pilot project (BL). We evaluated sensor performance using collocations with reference instruments, estimating ∼ 35 % average uncertainty (root mean square error) in the calibrated LCSs, and identified infrequent, multi-week periods of poorer performance and high bias during summer months. We analyzed BL data to generate insights about London's air pollution, including long-term concentration trends, diurnal and day-of-week patterns, and profiles of elevated concentrations during regional pollution episodes. These findings were validated against measurements from an extensive reference network, demonstrating the BL network's ability to generate robust information about London's air pollution. In cases where the BL network did not effectively capture features that the reference network measured, ongoing collocations of representative sensors often provided evidence of irregularities in sensor performance, demonstrating how, in the absence of an extensive reference network, project-long collocations could enable characterization and mitigation of network-wide sensor uncertainties. The conclusions are restricted to the specific sensors used for this study, but the results give direction to LCS users by demonstrating the kinds of air pollution insights possible from LCS networks and provide a blueprint for future LCS projects to manage and evaluate uncertainties when collecting, analyzing, and interpreting data.

Funder

Children's Investment Fund Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference53 articles.

1. Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, R. C. H., and Hamburg, S. P.: High-resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data, Environ. Sci. Technol., 51, 6999–7008, https://doi.org/10.1021/acs.est.7b00891, 2017.

2. AQMesh: https://www.aqmesh.com/products/aqmesh/, last access: 15 June 2021.

3. AQ-SPEC: AQMesh (v.4.0) – field evaluation, South Coast AQMD, available at: http://www.aqmd.gov/aq-spec/sensordetail/aqmesh-(v.4.0) (last access: 7 January 2022), Diamond Bar, CA, 2015.

4. Bi, J., Stowell, J., Seto, E. Y. W., English, P. B., Al-Hamdan, M. Z., Kinney, P. L., Freedman, F. R., and Liu, Y.: Contribution of low-cost sensor measurements to the prediction of PM2.5 levels: A case study in Imperial County, California, USA, Environ. Res., 180, 108810, https://doi.org/10.1016/j.envres.2019.108810, 2020.

5. Breathe London: AQMesh fixed sensor network data quality assurance and control procedures, available at: https://www.globalcleanair.org/files/2021/01/Breathe-London-Fixed-Sensor-Network-QAQC-Procedures.pdf (last access: 7 January 2022), 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3