Differential resilience of ancient sister lakes Ohrid and Prespa to environmental disturbances during the Late Pleistocene

Author:

Jovanovska Elena,Cvetkoska AleksandraORCID,Hauffe Torsten,Levkov Zlatko,Wagner Bernd,Sulpizio RobertoORCID,Francke AlexanderORCID,Albrecht Christian,Wilke Thomas

Abstract

Abstract. Ancient lakes, such as lakes Ohrid and Prespa on the Balkan Peninsula, have become model systems for studying the link between geological and biotic evolution. Recently, the scientific deep-drilling project Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) was initiated to better understand the environmental, climatic, and limnological evolution of the lake. It revealed that Lake Ohrid experienced a number of environmental disturbances during its ca. 2.0 million year long history. These are comprised of disturbances that lasted over longer periods of time (“press events”) such as glacial–interglacial cycles and Heinrich events, as well as sudden and short disturbances (“pulse events”) like the deposition of landslides, earthquakes, and volcanic ash depositions. The latter includes one of the most severe volcanic episodes during the Late Pleistocene: the eruption of the Campanian Ignimbrite (known as Y-5 marine tephra layer) from the Campi Flegrei caldera, dated to 39.6 ± 0.1 thousand years ago. The event is recorded by the deposition of a ca. 15 cm thick tephra layer in sediment cores of lakes Ohrid (DEEP-5045-1) and Prespa (Co1204). Coincidently, this pulse event is superimposed by the Heinrich H4 event, 40.4–38.4 thousand years ago. In the current paper, diatoms were used as proxies to compare the responses of these lakes to the Y-5 (pulse) and the H4 (press) disturbances. Based on stratigraphically constrained incremental sum of squares cluster (CONISS) and unconstrained Partitioning Around Medoids (PAM) analyses, we found little evidence that diatom community compositions in either lake responded to the H4 event. However, the Y-5 influx caused clear and rapid diatom community changes. After the initial response, community compositions in Lake Ohrid and, to a lesser extent, in Lake Prespa slowly returned to their quasi pre-disturbance state. Moreover, there is no evidence for disturbance-related extinction events. The combined evidence from these findings suggests that lakes Ohrid and Prespa likely did not experience regime shifts. It is therefore concluded that both lakes show resilience to environmental disturbance. However, it seems that Lake Ohrid is more resilient than Lake Prespa, as the recovery of diatom communities is more pronounced and its estimated recovery time is only ca. 1100 years vs. ca. 4000 years in Lake Prespa. The reasons for the differential responses remain largely unknown, but differences in geology, lake age, limnology, and intrinsic parameters of the diatom proxies may play an important role.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3