INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model
-
Published:2016-08-16
Issue:8
Volume:9
Page:2685-2700
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Mangeon Stéphane, Voulgarakis ApostolosORCID, Gilham Richard, Harper AnnaORCID, Sitch Stephen, Folberth GerdORCID
Abstract
Abstract. Warm and dry climatological conditions favour the occurrence of forest fires. These fires then become a significant emission source to the atmosphere. Despite this global importance, fires are a local phenomenon and are difficult to represent in large-scale Earth system models (ESMs). To address this, the INteractive Fire and Emission algoRithm for Natural envirOnments (INFERNO) was developed. INFERNO follows a reduced complexity approach and is intended for decadal- to centennial-scale climate simulations and assessment models for policy making. Fuel flammability is simulated using temperature, relative humidity (RH) and fuel load as well as precipitation and soil moisture. Combining flammability with ignitions and vegetation, the burnt area is diagnosed. Emissions of carbon and key species are estimated using the carbon scheme in the Joint UK Land Environment Simulator (JULES) land surface model. JULES also possesses fire index diagnostics, which we document and compare with our fire scheme. We found INFERNO captured global burnt area variability better than individual indices, and these performed best for their native regions. Two meteorology data sets and three ignition modes are used to validate the model. INFERNO is shown to effectively diagnose global fire occurrence (R = 0.66) and emissions (R = 0.59) through an approach appropriate to the complexity of an ESM, although regional biases remain.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Reference67 articles.
1. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 2. Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001. 3. Arora, V. K. and Boer, G. J.: Fire as an interactive component of dynamic vegetation models, J. Geophys. Res.-Biogeo., 110, G02008, https://doi.org/10.1029/2005JG000042, 2005. 4. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 5. Bistinas, I., Harrison, S. P., Prentice, I. C., and Pereira, J. M. C.: Causal relationships versus emergent patterns in the global controls of fire frequency, Biogeosciences, 11, 5087–5101, https://doi.org/10.5194/bg-11-5087-2014, 2014.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|