Evaluation of statistical climate reconstruction methods based on pseudoproxy experiments using linear and machine-learning methods

Author:

Zhang Zeguo,Wagner Sebastian,Klockmann MarleneORCID,Zorita EduardoORCID

Abstract

Abstract. Three different climate field reconstruction (CFR) methods are employed to reconstruct spatially resolved North Atlantic–European (NAE) and Northern Hemisphere (NH) summer temperatures over the past millennium from proxy records. These are tested in the framework of pseudoproxy experiments derived from two climate simulations with comprehensive Earth system models. Two of these methods are traditional multivariate linear methods (principal component regression, PCR, and canonical correlation analysis, CCA), whereas the third method (bidirectional long short-term memory neural network, Bi-LSTM) belongs to the category of machine-learning methods. In contrast to PCR and CCA, Bi-LSTM does not need to assume a linear and temporally stable relationship between the underlying proxy network and the target climate field. In addition, Bi-LSTM naturally incorporates information about the serial correlation of the time series. Our working hypothesis is that the Bi-LSTM method will achieve a better reconstruction of the amplitude of past temperature variability. In all tests, the calibration period was set to the observational period, while the validation period was set to the pre-industrial centuries. All three methods tested herein achieve reasonable reconstruction performance on both spatial and temporal scales, with the exception of an overestimation of the interannual variance by PCR, which may be due to overfitting resulting from the rather short length of the calibration period and the large number of predictors. Generally, the reconstruction skill is higher in regions with denser proxy coverage, but it is also reasonably high in proxy-free areas due to climate teleconnections. All three CFR methodologies generally tend to more strongly underestimate the variability of spatially averaged temperature indices as more noise is introduced into the pseudoproxies. The Bi-LSTM method tested in our experiments using a limited calibration dataset shows relatively worse reconstruction skills compared to PCR and CCA, and therefore our working hypothesis that a more complex machine-learning method would provide better reconstructions for temperature fields was not confirmed. In this particular application with pseudoproxies, the implied link between proxies and climate fields is probably close to linear. However, a certain degree of reconstruction performance achieved by the nonlinear LSTM method shows that skill can be achieved even when using small samples with limited datasets, which indicates that Bi-LSTM can be a tool for exploring the suitability of nonlinear CFRs, especially in small data regimes.

Funder

China Scholarship Council

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Reference106 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3