Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series
-
Published:2018-05-30
Issue:5
Volume:11
Page:3091-3109
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Rieckh Therese, Anthes Richard, Randel WilliamORCID, Ho Shu-Peng, Foelsche UlrichORCID
Abstract
Abstract. While water vapor is the most important tropospheric greenhouse gas, it is
also highly variable in both space and time, and water vapor concentrations
range over 3 orders of magnitude in the troposphere. These properties
challenge all observing systems to accurately measure and resolve the
vertical structure and variability of tropospheric humidity. In this study we
characterize the humidity measurements of various observing techniques,
including four separate Global Positioning System (GPS) radio occultation
(RO) humidity retrievals (University Corporation for Atmospheric
Research (UCAR) direct, UCAR one-dimensional variational retrieval (1D-Var), Wegener Center for Climate and
Global Change (WEGC) 1D-Var, Jet
Propulsion Laboratory (JPL) direct), radiosonde, and Atmospheric Infrared
Sounder (AIRS) data. Furthermore, we evaluate how well the ERA-Interim
reanalysis and NCEP Global
Forecast System (GFS) model perform in analyzing water vapor at different
levels. To investigate detailed vertical structure, we analyzed time–height
cross sections over four radiosonde stations in the tropical and subtropical
western Pacific for the year 2007. We found that the accuracy of RO humidity
is comparable to or better than both radiosonde and AIRS humidity over 800 to
400 hPa, as well as below 800 hPa if super-refraction is absent. The
various RO retrievals of specific humidity agree within 20 % in the
1000–400 hPa layer, and differences are most pronounced above
600 hPa.
Funder
National Science Foundation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference41 articles.
1. Anthes, R. and Rieckh, T.: Estimating observation and model error variances
using multiple data sets, Atmos. Meas. Tech. Discuss.,
https://doi.org/10.5194/amt-2017-487, in review, 2018. a, b 2. Anthes, R. A.: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather,
Atmos. Meas. Tech., 4, 1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011. a 3. Anthes, R. A., Ector, D., Hunt, D. C., Kuo, Y.-H., Rocken, C., Schreiner,
W. S., Sokolovskiy, S. V., Syndergaard, S., Wee, T.-K., Zeng, Z., Bernhardt,
P. A., Dymond, K. F., Chen, Y., Liu, H., Manning, K., Randel, W. J.,
Trenberth, K. E., Cucurull, L., Healy, S. B., Ho, S.-P., McCormick, C.,
Meehan, T. K., Thompson, D. C., and Yen, N. L.: The COSMIC/FORMOSAT-3
Mission: Early Results, B. Am. Meteorol. Soc., 89, 313–333,
https://doi.org/10.1175/BAMS-89-3-313, 2008. a 4. Bodeker, G. E., Bojinski, S., Cimini, D., Dirksen, R. J., Haeffelin, M.,
Hannigan, J. W., Hurst, D. F., Leblanc, T., Madonna, F., Maturilli, M.,
Mikalsen, A. C., Philipona, R., Reale, T., Seidel, D. J., Tan, D. G. H.,
Thorne, P. W., Vömel, H., and Wang, J.: Reference Upper-Air
Observations for Climate: From Concept to Reality, B. Am. Meteorol. Soc.,
97, 123–135, https://doi.org/10.1175/BAMS-D-14-00072.1, 2016. a 5. Chou, M.-D., Weng, C.-H., and Lin, P.-H.: Analyses of FORMOSAT-3/COSMIC
humidity retrievals and comparisons with AIRS retrievals and NCEP/NCAR
reanalyses, J. Geophys. Res., 114, D00G03, https://doi.org/10.1029/2008JD010227, 2009. a, b
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|