Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands

Author:

Kindel B. C.,Pilewskie P.,Schmidt K. S.ORCID,Thornberry T.ORCID,Rollins A.,Bui T.

Abstract

Abstract. Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near-infrared spectra acquired with the Solar Spectral Flux Radiometer (SSFR) during the first science phase of the NASA Airborne Tropical TRopopause EXperiment (ATTREX). From the 1400 and 1900 nm absorption bands we infer water vapor amounts in the tropical tropopause layer and adjacent regions between altitudes of 14 and 18 km. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004). Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 × 10−4 to 4.59 × 10−4 g cm−2. A 0.002 difference in absorptance at 1367 nm results in a 3.35 × 10−5 g cm−2 change of integrated water vapor amounts; 0.004 absorptance change at 1870 nm results in 5.50 × 10−5 g cm−2 of water vapor. These are 27% (1367 nm) and 44% (1870 nm) differences at the lowest measured value of water vapor (1.26 × 10−4 g cm−2) and 7% (1367 nm) and 12% (1870 nm) differences at the highest measured value of water vapor (4.59 × 10−4 g cm−2). A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere is discussed.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maturation of a single frequency ErYAG laser for water vapor/methane DIAL application;Laser Radar Technology and Applications XXVI;2021-04-12

2. Rotating missile self-infrared radiation interference compensation for dual-band infrared attitude measurement;Journal of Applied Physics;2020-09-14

3. Infrared Radiation in the Energetics of the Atmosphere;High Temperature;2019-07

4. Single Frequency Er:YAG methane/water vapor DIAL source;Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP);2018

5. The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft Measurements in the Tropical Western Pacific;Bulletin of the American Meteorological Society;2017-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3