Frequency distributions: from the sun to the earth

Author:

Crosby N. B.

Abstract

Abstract. The space environment is forever changing on all spatial and temporal scales. Energy releases are observed in numerous dynamic phenomena (e.g. solar flares, coronal mass ejections, solar energetic particle events) where measurements provide signatures of the dynamics. Parameters (e.g. peak count rate, total energy released, etc.) describing these phenomena are found to have frequency size distributions that follow power-law behavior. Natural phenomena on Earth, such as earthquakes and landslides, display similar power-law behavior. This suggests an underlying universality in nature and poses the question of whether the distribution of energy is the same for all these phenomena. Frequency distributions provide constraints for models that aim to simulate the physics and statistics observed in the individual phenomenon. The concept of self-organized criticality (SOC), also known as the "avalanche concept", was introduced by Bak et al. (1987, 1988), to characterize the behavior of dissipative systems that contain a large number of elements interacting over a short range. The systems evolve to a critical state in which a minor event starts a chain reaction that can affect any number of elements in the system. It is found that frequency distributions of the output parameters from the chain reaction taken over a period of time can be represented by power-laws. During the last decades SOC has been debated from all angles. New SOC models, as well as non-SOC models have been proposed to explain the power-law behavior that is observed. Furthermore, since Bak's pioneering work in 1987, people have searched for signatures of SOC everywhere. This paper will review how SOC behavior has become one way of interpreting the power-law behavior observed in natural occurring phenomenon in the Sun down to the Earth.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3