Reconstruction of the biogeochemistry and ecology of photoautotrophs based on the nitrogen and carbon isotopic compositions of vanadyl porphyrins from Miocene siliceous sediments

Author:

Kashiyama Y.,Ogawa N. O.,Shiro M.,Tada R.,Kitazato H.,Ohkouchi N.

Abstract

Abstract. We determined both the nitrogen and carbon isotopic compositions of various vanadyl alkylporphyrins isolated from siliceous marine sediments of the Onnagawa Formation (middle Miocene, northeastern Japan) to investigate the biogeochemistry and ecology of photoautotrophs living in the paleo-ocean. The distinctive isotopic signals support the interpretations of previous works that the origin of 17-nor-deoxophylloerythroetioporphyrin (DPEP) is chlorophylls-c1-3, whereas 8-nor-DPEP may have originated from chlorophylls-a2 or b2 or bacteriochlorophyll-a. Although DPEP and cycloheptanoDPEP are presumably derived from common precursory pigments, their isotopic compositions differed in the present study, suggesting that the latter represents a specific population within the photoautotrophic community. The average δ15N value for the entire photoautotrophic community is estimated to be –2 to +1‰ from the δ15N values of DPEP (–6.9 to –3.6‰; n=7), considering that the empirical isotopic relationships that the tetrapyrrole nuclei of chloropigments are depleted in 15N by ~4.8‰ and enriched in 13C by ~1.8‰ relative to the whole cells. This finding suggests that nitrogen utilized in the primary production was supplied mainly through N2-fixation by diazotrophic cyanobacteria. Based on the δ13C values of DPEP (–17.9 to –15.6‰; n=7), we estimated isotopic fractionation associated with photosynthetic carbon fixation to be 8–14‰. This range suggests the importance of β-carboxylation and/or active transport of the carbon substrate, indicating in turn the substantial contribution of diazotrophic cyanobacteria to primary production. Based on the δ15N values of 17-nor-DPEP (–7.4 to –2.4‰ n=7), the δ15N range of chlorophylls-c-producing algae was estimated to be –3 to +3‰. This relative depletion in sup>15N suggests that these algae mainly utilized nitrogen regenerated from diazotrophic cyanobacteria. Given that diatoms are likely to have constituted the chlorophylls-c-producing algae within the biogenic-silica-rich Onnagawa Formation, cyanobacteria-hosting diatoms may have been important contributors to primary production.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3