Aerosol fluxes and particle growth above managed grassland
Author:
Nemitz E.,Dorsey J. R.,Flynn M. J.,Gallagher M. W.,Hensen A.,Erisman J.-W.,Owen S. M.,Dämmgen U.,Sutton M. A.
Abstract
Abstract. Particle deposition velocities (11–3000 nm diameter) measured above grassland by eddy covariance during the EU GRAMINAE experiment in June 2000 averaged 0.24 and 0.03 mm s−1 to long (0.75 m) and short (0.07 m) grass, respectively. After fertilisation with 108 kg N ha−1 as calcium ammonium nitrate, sustained apparent upward fluxes of particles were observed. Analysis of concentrations and fluxes of potential precursor gases, including NH3, HNO3, HCl and selected VOCs, shows that condensation of HNO3 and NH3 on the surface of existing particles is responsible for this effect. A novel approach is developed to derive particle growth rates at the field scale, from a combination of measurements of vertical fluxes and particle size-distributions. For the first 9 days after fertilization, growth rates of 11 nm particles of 3.5 nm hr−1 and 0.89 nm hr−1 were derived for day and night-time conditions, respectively. This implies total NH4NO3 production rates of 1.1 and 0.44 μg m−3 h−1, respectively. The effect translates into a small error in measured ammonia fluxes (0.06% day, 0.56% night) and a larger error in NH4+ and NO3- aerosol fluxes of 3.6% and 10%, respectively. By converting rapidly exchanged NH3 and HNO3 into slowly depositing NH4NO3, the reaction modifies the total N budget, though this effect is small (<1% for the 10 days following fertilization), as NH3 emission dominates the net flux. It is estimated that 3.8% of the fertilizer N was volatilised as NH3, of which 0.05% re-condensed to form NH4NO3 particles within the lowest 2 m of the surface layer. This surface induced process would at least scale up to a global NH4NO3 formation of ca. 0.21 kt N yr−1 from NH4NO3 fertilisers and potentially 45 kt N yr−1 from NH3 emissions in general.
Publisher
Copernicus GmbH
Reference70 articles.
1. Adams, P J., Seinfeld, J H., Koch, D., Micley, L., and Jacob, D.: general circulation assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system, J Geophys Res., 106(D1), 1097–1111, 2001 2. Allan, J D., Coe, H., Bower, K N., Williams, P I., Gallagher, M~W., Alfarra, M R., Jimenez, J L., Nemitz, E., and McDonald, A G.: Quantitative sampling using the Aerodyne Aerosol Mass Spectrometer Part 2: Measurements of fine particulate chemical composition in two UK cities, J Geophys Res., 108, 4091, https://doi.org/4010.1029/2002JD002359, 2003 3. Bouwman, A F., Lee, D S., Asman, W A H., Dentener, F J., van~der~Hoek, K W. and Olivier, J G J.: A global high-resolution emission inventory for ammonia, Global Biogeochem Cy., 11(4), 561~pp., 1997. 4. Cruz, C N., Dassios, K G., and Pandis, S N.: The effect of dioctyl phthalate films on the ammonium nitrate aerosol evaporation rate, Atmos Environ., 34(23), 3897–3905, 2000. 5. Dal~Maso, M., Kulmala, M., Lehtinen, K E J., Mäkelä, J M., Aalto, P., and O'Dowd, C D.: Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers, J Geophys Res., 107(D19), 2001JD001053, 2002.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|