From laboratory manipulations to earth system models: predicting pelagic calcification and its consequences

Author:

Ridgwell A.,Schmidt D. N.,Turley C.,Brownlee C.,Maldonado M. T.,Tortell P.,Young J. R.

Abstract

Abstract. The variation in pH-dependent calcification responses of coccolithophores paint a highly incoherent picture, particularly for the most commonly cultured "species", Emiliania huxleyi. The disparity between magnitude and even sign of the calcification change at higher CO2 (lower pH), raises challenges to quantifying future carbon cycle changes and feedbacks, by introducing significant uncertainty in parameterizations used for global models. Putting aside the possibility of methodological differences that introduce an experimental bias, we highlight two pertinent observations that can help resolve conflicting interpretations: (1) a calcification "optimum" in environmental conditions (pH) has been observed in other coccolithophore species, and (2) there exists an unambiguous direction to the CO2-calcification response across mesocosm and shipboard incubations. We propose that an equivalence can be drawn between integrated ecosystem calcification as a function of pH (or other carbonate system parameter such as calcite saturation state) and a widely used description of plankton growth rate vs. temperature – the "Eppley curve". This provides a conceptual framework for reconciling available experimental manipulations as well as a quasi-empirical relationship for ocean acidification impacts on carbonate production that can be incorporated into models. By analogy to the Eppley curve temperature vs. growth rate relationship, progressive ocean acidification in the future may drive a relatively smooth ecosystem response through transition in dominance from more to less heavily calcified coccolithophores in addition to species-specific calcification changes. However, regardless of the model parameterization employed, on a century time-scale, the CO2-calcification effect is a minor control of atmospheric CO2 compared to other C cycle feedbacks or to fossil fuel emissions.

Funder

European Commission

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3