Analysis of the position and strength of westerlies and trades with implications for Agulhas leakage and South Benguela upwelling
-
Published:2019-12-05
Issue:4
Volume:10
Page:847-858
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Tim NeleORCID, Zorita EduardoORCID, Emeis Kay-Christian, Schwarzkopf Franziska U.ORCID, Biastoch Arne, Hünicke Birgit
Abstract
Abstract. The westerlies and trade winds over the South Atlantic and Indian Ocean are important drivers of the regional oceanography around southern Africa, including features such as the Agulhas Current, the Agulhas leakage, and the Benguela upwelling. Agulhas leakage constitutes a fraction of warm and saline water transport from the Indian Ocean into the South Atlantic. The leakage is stronger during intensified westerlies. Here, we analyze the wind stress of different observational and modeled atmospheric data sets (covering the last 2 millennia, the recent decades, and the 21st century) with regard to the intensity and position of the southeasterly trades and the westerlies. The analysis reveals that variations of both wind systems go hand in hand and that a poleward shift of the westerlies and trades and an intensification of westerlies took place during the recent decades. Furthermore, upwelling in South Benguela is slightly intensified when trades are shifted poleward.
Projections for strength and position of the westerlies in the 21st century depend on assumed CO2 emissions and on their effect relative to the ozone forcing. In the strongest emission scenario (RCP8.5) the simulations show a further southward displacement, whereas in the weakest emission scenario (RCP2.6) a northward shift is modeled, possibly due to the effect of ozone recovery dominating the effect of anthropogenic greenhouse forcing.
We conclude that the Agulhas leakage has intensified during the last decades and is projected to increase if greenhouse gas emissions are not reduced. This will have a small impact on Benguela upwelling strength and may also have consequences for water mass characteristics in the upwelling region. An increased contribution of Agulhas water to the upwelling water masses will import more preformed nutrients and oxygen into the upwelling region.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference45 articles.
1. Bakun, A., Field, D. B., Redondo-Rodriguez, A., and Weeks, S. J.: Greenhouse
gas, upwelling-favorable winds, and the future of coastal ocean upwelling
ecosystems, Glob. Change Biol., 16, 1213–1228,
https://doi.org/10.1111/j.1365-2486.2009.02094.x, 2010. a 2. Beal, L. M. and Bryden, H. L.: Observations of an Agulhas undercurrent, Deep-Sea Res. Pt. I, 44, 1715–1724, https://doi.org/10.1016/s0967-0637(97)00033-2, 1997. a 3. Beal, L. M. and Elipot, S.: Broadening not strengthening of the Agulhas Current since the early 1990s, Nature, 540, 570–573, https://doi.org/10.1038/nature19853,
2016. a 4. Biastoch, A., Böning, C. W., Schwarzkopf, F. U., and Lutjeharms, J.:
Increase in Agulhas leakage due to poleward shift of Southern Hemisphere
westerlies, Nature, 462, 495–498, https://doi.org/10.1038/nature08519, 2009. a, b, c 5. Blanke, B., Speich, S., Bentamy, A., Roy, C., and Sow, B.: Modeling the
structure and variability of the southern Benguela upwelling using QuikSCAT
wind forcing, J. Geophys. Res.-Oceans, 110, C07018, https://doi.org/10.1029/2004jc002529,
2005. a
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|