Multivariate benthic ecosystem functioning in the Arctic – benthic fluxes explained by environmental parameters in the southeastern Beaufort Sea

Author:

Link H.,Chaillou G.,Forest A.,Piepenburg D.,Archambault P.

Abstract

Abstract. The effects of climate change on Arctic marine ecosystems and their biogeochemical cycles are difficult to predict given the complex physical, biological and chemical interactions among the ecosystem components. To predict the impact of future changes on benthic biogeochemical fluxes in the Arctic, it is important to understand the influence of short-term (seasonal to annual), long-term (annual to decadal) and other environmental variability on their spatial distribution. In summer 2009, we measured fluxes of dissolved oxygen, nitrate, nitrite, ammonia, soluble reactive phosphate and silicic acid at the sediment-water interface at eight sites in the southeastern Beaufort Sea at water depths from 45 to 580 m to address the following question and hypotheses using a statistical approach: (1) What is the spatial variation of benthic boundary fluxes (sink and source)? (2) The classical proxy of benthic activity, oxygen flux, does not determine overall spatial variation in fluxes. (3) A different combination of environmental conditions that vary either on a long-term (decadal) or short-term (seasonal to annual) scale determine each single flux. And (4) A combination of environmental conditions varying on the short and long-term scale drive the overall spatial variation in benthic boundary fluxes. The spatial pattern of the measured benthic boundary fluxes was heterogeneous. Multivariate analysis of flux data showed that no single or reduced combination of fluxes could explain the majority of spatial variation. We tested the influence of eight environmental parameters: sinking flux of particulate organic carbon above the bottom, sediment surface Chl a (both short-term), porosity, surface manganese and iron concentration, bottom water oxygen concentrations (all long-term), phaeopigments (intermediate-term influence) and Δ13Corg (terrestrial influence) on benthic fluxes. Short-term environmental parameters were most important for explaining oxygen, ammonium and nitrate fluxes. Long-term parameters together with Δ13Corg signature explained most of the spatial variation in phosphate, nitrate and nitrite fluxes. Sediment pigments and Δ13Corg levels in surficial sediments were most important to explain fluxes of silicic acid. The overall spatial distribution of fluxes could be best explained (57%) by the combination of sediment Chla, phaeopigments, Δ13Corg, surficial manganese and bottom water oxygen concentration. We conclude that it is necessary to consider long-term environmental variability in the prediction of the impact of ongoing short-term environmental changes on the flux of oxygen and nutrients in Arctic sediments. Our results contribute to improve ecological models predicting the impact if climate change on the functioning of marine ecosystems.

Publisher

Copernicus GmbH

Reference97 articles.

1. ACIA: Arctic Climate Impact Assessment (ACIA), Cambridge, UK, 1046, 2004.

2. Akaike, H.: A new look at the Bayes procedure, Biometrika, 65, 53–59, 1978.

3. Aller, R. C.: Benthic fauna and biogeochemical processes in marine sediments: The role of burrow structures, in: Nitrogen cycling in coastal marine environments, edited by: Blackburn, T. H., and Sørensen, J., John Wiley, 301–338, 1988.

4. Anderson, M. J., Gorley, R. N., and Clarke, K. R.: PERMANOVA+ for PRIMER: guide to software and statistical methods, PRIMER-E Ltd., Plymouth, UK, 2008.

5. Anschutz, P., Dedieu, K., Desmazes, F., and Chaillou, G.: Speciation, oxidation state, and reactivity of particulate manganese in marine sediments, Chem. Geol., 218, 265–279, https://doi.org/10.1016/j.chemgeo.2005.01.008, 2005.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3