Life cycle of bamboo in the southwestern Amazon and its relation to fire events

Author:

Dalagnol Ricardo,Wagner Fabien HubertORCID,Galvão Lênio Soares,Nelson Bruce WalkerORCID,Aragão Luiz Eduardo Oliveira e Cruz de

Abstract

Abstract. Bamboo-dominated forests comprise 1 % of the world's forests and 3 % of the Amazon forests. The Guadua spp. bamboos that dominate the southwest Amazon are semelparous; thus flowering and fruiting occur once in a lifetime before death. These events occur in massive spatially organized patches every 28 years and produce huge quantities of necromass. The bamboo–fire hypothesis argues that increased dry fuel after die-off enhances fire probability, creating opportunities that favor bamboo growth. In this study, our aim is to map the bamboo-dominated forests and test the bamboo–fire hypothesis using satellite imagery. Specifically, we developed and validated a method to map the bamboo die-off and its spatial distribution using satellite-derived reflectance time series from the Moderate Resolution Imaging Spectroradiometer (MODIS) and explored the bamboo–fire hypothesis by evaluating the relationship between bamboo die-off and fires detected by the MODIS thermal anomalies product in the southwest Amazon. Our findings show that the near-infrared (NIR) is the most sensitive spectral interval to characterize bamboo growth and cohort age. Automatic detection of historical bamboo die-off achieved an accuracy above 79 %. We mapped and estimated 15.5 million ha of bamboo-dominated forests in the region. The bamboo–fire hypothesis was not supported because only a small fraction of bamboo areas burned during the analysis timescale, and, in general, bamboo did not show higher fire probability after the die-off. Nonetheless, fire occurrence was 45 % higher in dead than live bamboo in drought years, associated with ignition sources from land use, suggesting a bamboo–human–fire association. Although our findings show that the observed fire was not sufficient to drive bamboo dominance, the increased fire occurrence in dead bamboo in drought years may contribute to the maintenance of bamboo and potential expansion into adjacent bamboo-free forests. Fire can even bring deadly consequences to these adjacent forests under climate change effects.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference47 articles.

1. Aragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., Silva, C. V., Silva Junior, C. H., Arai, E., Aguiar, A. P., Barlow, J., Berenguer, E., Deeter, M. N., Domingues, L. G., Gatti, L., Gloor, M., Malhi, Y., Marengo, J. A., Miller, J. B., Phillips, O. L., and Saatchi, S.: 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions, Nat. Commun., 9, 1–12, https://doi.org/10.1038/s41467-017-02771-y, 2018.

2. Aragão, L. E. O. C., Malhi, Y., Roman-Cuesta, R. M., Saatchi, S., Anderson, L. O., and Shimabukuro, Y. E.: Spatial patterns and fire response of recent Amazonian droughts, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL028946, 2007.

3. Balée, W.: The culture of Amazonian forests, in: Resource Management in Amazonia: Indigenous and Folk Strategies, edited by: Posey, D. A. and Balée, W., New York Botanical Garden, New York, 1–21, 1989.

4. Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silvério, D., Macedo, M. N., Davidson, E. a., Nóbrega, C. C., Alencar, A., and Soares-Filho, B. S.: Abrupt increases in Amazonian tree mortality due to drought-fire interactions, P. Natl. Acad. Sci. USA, 111, 6347–52, https://doi.org/10.1073/pnas.1305499111, 2014.

5. Carvalho, A. L., Nelson, B. W., Bianchini, M. C., Plagnol, D., Kuplich, T. M., and Daly, D. C.: Bamboo-Dominated Forests of the Southwest Amazon: Detection, Spatial Extent, Life Cycle Length and Flowering Waves, PLoS ONE, 8, 1–13, https://doi.org/10.1371/journal.pone.0054852, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3