Influence of atmospheric conditions on the role of trifluoroacetic acid in atmospheric sulfuric acid–dimethylamine nucleation
-
Published:2021-04-26
Issue:8
Volume:21
Page:6221-6230
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Liu LingORCID, Yu FangqunORCID, Tu Kaipeng, Yang Zhi, Zhang XiuhuiORCID
Abstract
Abstract. Ambient measurements combined with theoretical simulations have shown evidence that the tropospheric degradation end-products of Freon alternatives, trifluoroacetic acid (TFA), one of the most important and abundant atmospheric organic substances, can enhance the nucleation process based on sulfuric acid (SA) and dimethylamine (DMA) in urban environments. However, TFA is widespread all over the world under different atmospheric conditions, such as temperature and nucleation precursor concentration, which are the most important factors potentially influencing the atmospheric nucleation process and thus inducing different nucleation mechanisms. Herein, using the density functional theory combined with the Atmospheric Cluster Dynamics Code, the influence of temperature and nucleation precursor concentrations on the role of TFA in the SA–DMA nucleation has been investigated. The results indicate that the growth trends of clusters involving TFA can increase with the decrease in temperature. The enhancement on particle formation rate by TFA and the contributions of the SA–DMA–TFA cluster to the cluster formation pathways can be up to 227-fold and 95 %, respectively, at relatively low temperature, low SA concentration, high TFA concentration, and high DMA concentration, such as in winter, at the relatively high atmospheric boundary layer, or in megacities far away from industrial sources of sulfur-containing pollutants. These results provide the perspective of the realistic role of TFA in different atmospheric environments, revealing the potential influence of the tropospheric degradation of Freon alternatives under a wide range of atmospheric conditions.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference48 articles.
1. Berndt, T., Böge, O., Stratmann, F., Heintzenberg, J., and Kulmala, M.: Rapid
formation of sulfuric acid particles at near-atmospheric conditions, Science,
307, 698–700, https://doi.org/10.1126/science.1104054, 2005. a 2. Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R.,
Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy,
J., M., G., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kürten, A.,
Manninen, H. E., Münch, S., Peräkylä, O., Petäjä, T.,
Rondo, L., Williamson, C., Weingartner, E., Curtius, J., Worsnop, D. R.,
Kulmala, M., Dommen, J., and Baltensperger, U.: New particle formation in the
free troposphere: A question of chemistry and timing, Science, 352,
1109–1112, https://doi.org/10.1126/science.aad5456, 2016. a 3. Bork, N., Elm, J., Olenius, T., and Vehkamäki, H.: Methane sulfonic acid-enhanced formation of molecular clusters of sulfuric acid and dimethyl amine, Atmos. Chem. Phys., 14, 12023–12030, https://doi.org/10.5194/acp-14-12023-2014, 2014. a, b 4. Brean, J., Beddows, D. C. S., Shi, Z., Temime-Roussel, B., Marchand, N., Querol, X., Alastuey, A., Minguillón, M. C., and Harrison, R. M.: Molecular insights into new particle formation in Barcelona, Spain, Atmos. Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020, 2020. a 5. Burkholder, J. B., Cox, R. A., and Ravishankara, A. R.: Atmospheric degradation
of ozone depleting substances, their substitutes, and related species, Chem.
Rev., 115, 3704–3759, https://doi.org/10.1021/cr5006759, 2015. a
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|