An ensemble Kalman filter system with the Stony Brook Parallel Ocean Model v1.0

Author:

Ohishi ShunORCID,Hihara Tsutomu,Aiki Hidenori,Ishizaka JojiORCID,Miyazawa Yasumasa,Kachi Misako,Miyoshi TakemasaORCID

Abstract

Abstract. This study develops an ensemble Kalman filter (EnKF)-based regional ocean data assimilation system in which the local ensemble transform Kalman filter (LETKF) is implemented with version 1.0 of the Stony Brook Parallel Ocean Model (sbPOM) to assimilate satellite and in situ observations at a daily frequency. A series of sensitivity experiments are performed with various settings of the incremental analysis update (IAU) and covariance inflation methods, for which the relaxation-to-prior perturbations and spread (RTPP and RTPS, respectively) and multiplicative inflation (MULT) are considered. We evaluate the geostrophic balance and the analysis accuracy compared with the control experiment in which the IAU and covariance inflation are not applied. The results show that the IAU improves the geostrophic balance, degrades the accuracy, and reduces the ensemble spread, and that the RTPP and RTPS have the opposite effect. The experiment using a combination of the IAU and RTPP results in a significant improvement for both balance and analysis accuracy when the RTPP parameter is 0.8–0.9. The combination of the IAU and RTPS improves the balance when the RTPS parameter is ≤0.8 and increases the analysis accuracy for parameter values between 1.0 and 1.1, but the balance and analysis accuracy are not improved significantly at the same time. The experiments with MULT inflating the forecast ensemble spread by 5 % do not demonstrate sufficient skill in maintaining the balance and reproducing the surface flow field regardless of whether the IAU is applied or not. The 11 d ensemble forecast experiments show consistent results. Therefore, the combination of the IAU and RTPP with a parameter value of 0.8–0.9 is found to be the best setting for the EnKF-based ocean data assimilation system.

Funder

AIP Network Laboratory

RIKEN

Strategic International Collaborative Research Program

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Cabinet Office, Government of Japan

Publisher

Copernicus GmbH

Subject

General Medicine

Reference60 articles.

1. Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, 2009.

2. Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001.

3. Baduru, B., Paul, B., Banerjee, D. S., Sanikommu, S., and Paul, A.: Ensemble based regional ocean data assimilation system for the Indian Ocean: Implementation and evaluation, Ocean Model., 143, 101470, https://doi.org/10.1016/j.ocemod.2019.101470, 2019.

4. Balmaseda, M. A., Hernandez, F., Storto, A., Palmer, M. D., Alves, O., Shi, L., Smith, G. C., Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D., Boyer, T., Chang, Y. S., Chepurin, G. A., Ferry, N., Forget, G., Fujii, Y., Good, S., Guinehut, S., Haines, K., Ishikawa, Y., Keeley, S., Köhl, A., Lee, T., Martin, M. J., Masina, S., Masuda, S., Meyssignac, B., Mogensen, K., Parent, L., Peterson, K. A., Tang, Y. M., Yin, Y., Vernieres, G., Wang, X., Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J. F., Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A., Wilmer-Becker, K., and Gaillard, F.: The ocean reanalyses intercomparison project (ORA-IP), J. Oper. Oceanogr., 8, s80–s97, https://doi.org/10.1080/1755876X.2015.1022329, 2015.

5. Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to Himawari-8/9 – Japan's new-generation geostationary meteorological satellites, J. Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3