An ensemble Kalman filter system with the Stony Brook Parallel Ocean Model v1.0
-
Published:2022-11-18
Issue:22
Volume:15
Page:8395-8410
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Ohishi ShunORCID, Hihara Tsutomu, Aiki Hidenori, Ishizaka JojiORCID, Miyazawa Yasumasa, Kachi Misako, Miyoshi TakemasaORCID
Abstract
Abstract. This study develops an ensemble Kalman filter
(EnKF)-based regional ocean data assimilation system in which the local
ensemble transform Kalman filter (LETKF) is implemented with version 1.0 of the Stony Brook
Parallel Ocean Model (sbPOM) to assimilate satellite and in situ
observations at a daily frequency. A series of sensitivity experiments are
performed with various settings of the incremental analysis update (IAU) and
covariance inflation methods, for which the relaxation-to-prior
perturbations and spread (RTPP and RTPS, respectively) and multiplicative
inflation (MULT) are considered. We evaluate the geostrophic balance and the
analysis accuracy compared with the control experiment in which the IAU and
covariance inflation are not applied. The results show that the IAU improves
the geostrophic balance, degrades the accuracy, and reduces the ensemble
spread, and that the RTPP and RTPS have the opposite effect. The experiment
using a combination of the IAU and RTPP results in a significant improvement for both balance and analysis accuracy when the RTPP parameter is 0.8–0.9.
The combination of the IAU and RTPS improves the balance when the RTPS
parameter is ≤0.8 and increases the analysis accuracy for parameter
values between 1.0 and 1.1, but the balance and analysis accuracy are not
improved significantly at the same time. The experiments with MULT inflating the
forecast ensemble spread by 5 % do not demonstrate sufficient skill in
maintaining the balance and reproducing the surface flow field regardless of
whether the IAU is applied or not. The 11 d ensemble forecast experiments
show consistent results. Therefore, the combination of the IAU and RTPP with
a parameter value of 0.8–0.9 is found to be the best setting for the EnKF-based
ocean data assimilation system.
Funder
AIP Network Laboratory RIKEN Strategic International Collaborative Research Program Japan Society for the Promotion of Science Core Research for Evolutional Science and Technology Cabinet Office, Government of Japan
Publisher
Copernicus GmbH
Reference60 articles.
1. Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, 2009. 2. Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation,
Mon. Weather Rev., 129, 2884–2903,
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2,
2001. 3. Baduru, B., Paul, B., Banerjee, D. S., Sanikommu, S., and Paul, A.: Ensemble
based regional ocean data assimilation system for the Indian Ocean:
Implementation and evaluation, Ocean Model., 143, 101470,
https://doi.org/10.1016/j.ocemod.2019.101470, 2019. 4. Balmaseda, M. A., Hernandez, F., Storto, A., Palmer, M. D., Alves, O., Shi,
L., Smith, G. C., Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D.,
Boyer, T., Chang, Y. S., Chepurin, G. A., Ferry, N., Forget, G., Fujii, Y.,
Good, S., Guinehut, S., Haines, K., Ishikawa, Y., Keeley, S., Köhl, A.,
Lee, T., Martin, M. J., Masina, S., Masuda, S., Meyssignac, B., Mogensen,
K., Parent, L., Peterson, K. A., Tang, Y. M., Yin, Y., Vernieres, G., Wang,
X., Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J. F.,
Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A.,
Wilmer-Becker, K., and Gaillard, F.: The ocean reanalyses intercomparison
project (ORA-IP), J. Oper. Oceanogr., 8, s80–s97,
https://doi.org/10.1080/1755876X.2015.1022329, 2015. 5. Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai,
Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y.,
Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama,
H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to Himawari-8/9
– Japan's new-generation geostationary meteorological satellites, J.
Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|