1. Albrecht, C. and Klesitz, M.: Long Term Correlation of Wind Measurements Using Neural Networks: A New Method for Post-Processing Short-Time Measurement Data, in: Wind Power Asia 2006, available at: https://al-pro.eu/de.alpro.download.php (last access: 12 November 2021), 2006. a, b
2. anemos: anemos – Gesellschaft für Umweltmeteorologie mbH: anemos Windatlas D-3km.E5, available at:
https://anemos.de/files/windatlanten/Dokumentation-D-3km.ERA5-standortspezifisch-2020-03.pdf
(last access: 28 December 2020), 2020a. a
3. anemos: anemos – Gesellschaft für Umweltmeteorologie mbH: anemos Windatlas D-3km.M2, available at:
https://anemos.de/files/windatlanten/Dokumentation-D-3km.M2-standortspezifisch-2019-02.pdf (last access: 28 December 2020), 2020b. a
4. anemos: anemos – Gesellschaft für Umweltmeteorologie mbH: anemos Windatlas (general information), available at:
https://www.anemos.de/en/windatlas.php (last access: 15 January 2021), 2020c. a, b
5. Bass, J. H., Rebbeck, M., Landberg, L., Cabré, M., and Hunter, A.: An
Improved Measure-Correlate-Predict Algortihm for the Prediction of the Long
Term Wind Climate in Regions of Complex Environment: Final Report JOR3-CT98-0295, Renewable Energy Systems Ltd (UK), Risø National Laboratory (Denmark), Ecotecnia (Spain), University of Sunderland (UK), 2000. a, b, c