Capturing the interactions between ice sheets, sea level and the solid Earth on a range of timescales: a new “time window” algorithm

Author:

Han Holly KyeoreORCID,Gomez NatalyaORCID,Wan Jeannette Xiu Wen

Abstract

Abstract. Retreat and advance of ice sheets perturb the gravitational field, solid surface and rotation of the Earth, leading to spatially variable sea-level changes over a range of timescales O(100−6 years), which in turn feed back onto ice-sheet dynamics. Coupled ice-sheet–sea-level models have been developed to capture the interactive processes between ice sheets, sea level and the solid Earth, but it is computationally challenging to capture short-term interactions O(100−2 years) precisely within longer O(103−6 years) simulations. The standard forward sea-level modelling algorithm assigns a uniform temporal resolution in the sea-level model, causing a quadratic increase in total CPU time with the total number of input ice history steps, which increases with either the length or temporal resolution of the simulation. In this study, we introduce a new “time window” algorithm for 1D pseudo-spectral sea-level models based on the normal mode method that enables users to define the temporal resolution at which the ice loading history is captured during different time intervals before the current simulation time. Utilizing the time window, we assign a fine temporal resolution O(100−2 years) for the period of ongoing and recent history of surface ice and ocean loading changes and a coarser temporal resolution O(103−6 years) for earlier periods in the simulation. This reduces the total CPU time and memory required per model time step while maintaining the precision of the model results. We explore the sensitivity of sea-level model results to the model temporal resolution and show how this sensitivity feeds back onto ice-sheet dynamics in coupled modelling. We apply the new algorithm to simulate sea-level changes in response to global ice-sheet evolution over two glacial cycles and the rapid collapse of marine sectors of the West Antarctic Ice Sheet in the coming centuries and provide appropriate time window profiles for each application. The time window algorithm reduces the total CPU time by ∼ 50 % in each of these examples and changes the trend of the total CPU time increase from quadratic to linear. This improvement would increase with longer simulations than those considered here. Our algorithm also allows for coupling time intervals of annual temporal scale for coupled ice-sheet–sea-level modelling of regions such as West Antarctica that are characterized by rapid solid Earth response to ice changes due to the thin lithosphere and low mantle viscosities.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3