A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes

Author:

Mello Danilo César de,Veloso Gustavo Vieira,Lana Marcos Guedes de,Mello Fellipe Alcantara de Oliveira,Poppiel Raul RobertoORCID,Cabrero Diego Ribeiro Oquendo,Di Raimo Luis Augusto Di Loreto,Schaefer Carlos Ernesto Gonçalves Reynaud,Filho Elpídio Inácio Fernandes,Leite Emilson Pereira,Demattê José Alexandre Melo

Abstract

Abstract. Geophysical sensors combined with machine learning algorithms were used to understand the pedosphere system and landscape processes and to model soil attributes. In this research, we used parent material, terrain attributes, and data from geophysical sensors in different combinations to test and compare different and novel machine learning algorithms to model soil attributes. We also analyzed the importance of pedoenvironmental variables in predictive models. For that, we collected soil physicochemical and geophysical data (gamma-ray emission from uranium, thorium, and potassium; magnetic susceptibility and apparent electric conductivity) by three sensors (gamma-ray spectrometer, RS 230; susceptibilimeter KT10, Terraplus; and conductivimeter, EM38 Geonics) at 75 points and analyzed the data. The models with the best performance (R2 0.48, 0.36, 0.44, 0.36, 0.25, and 0.31) varied for clay, sand, Fe2O3, TiO2, SiO2, and cation exchange capacity prediction, respectively. Modeling with the selection of covariates at three phases (variance close to zero, removal by correction, and removal by importance) was adequate to increase the parsimony. The results were validated using the method “nested leave-one-out cross-validation”. The prediction of soil attributes by machine learning algorithms yielded adequate values for field-collected data, without any sample preparation, for most of the tested predictors (R2 values ranging from 0.20 to 0.50). Also, the use of four regression algorithms proved to be important since at least one of the predictors used one of the tested algorithms. The performance values of the best algorithms for each predictor were higher than those obtained with the use of a mean value for the entire area comparing the values of root mean square error (RMSE) and mean absolute error (MAE). The best combination of sensors that reached the highest model performance was that of the gamma-ray spectrometer and the susceptibilimeter. The most important variables for most predictions were parent material, digital elevation, standardized height, and magnetic susceptibility. We concluded that soil attributes can be efficiently modeled by geophysical data using machine learning techniques and geophysical sensor combinations. This approach can facilitate future soil mapping in a more time-efficient and environmentally friendly manner.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3