Melting of Northern Greenland during the last interglaciation
-
Published:2012-11-05
Issue:6
Volume:6
Page:1239-1250
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Born A.,Nisancioglu K. H.
Abstract
Abstract. Using simulated climate data from the comprehensive coupled climate model IPSL CM4, we simulate the Greenland ice sheet (GrIS) during the Eemian interglaciation with the three-dimensional ice sheet model SICOPOLIS. The Eemian is a period 126 000 yr before present (126 ka) with Arctic temperatures comparable to projections for the end of this century. In our simulation, the northeastern part of the GrIS is unstable and retreats significantly, despite moderate melt rates. This result is found to be robust to perturbations within a wide parameter space of key parameters of the ice sheet model, the choice of initial ice temperature, and has been reproduced with climate forcing from a second coupled climate model, the CCSM3. It is shown that the northeast GrIS is the most vulnerable. Even a small increase in melt removes many years of ice accumulation, giving a large mass imbalance and triggering the strong ice-elevation feedback. Unlike the south and west, melting in the northeast is not compensated by high accumulation. The analogy with modern warming suggests that in coming decades, positive feedbacks could increase the rate of mass loss of the northeastern GrIS, exceeding the recent observed thinning rates in the south.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference72 articles.
1. Abdalati, W.: Greenland Ice Sheet Melt Characteristics Derived from Passive Microwave Data, Tech. rep., National Snow and Ice Data Center, Boulder, Colorado USA, 2007. 2. Alley, R. B., Andrews, J. T., Brigham-Grette, J., Clarke, G. K. C., Cuffey, K. M., Fitzpatrick, J. J., Funder, S., Marshall, S. J., Miller, G. H., Mitrovica, J. X., Muhs, D. R., Otto-Bliesner, B. L., Polyak, L., and White, J. W. C.: History of the Greenland Ice Sheet: paleoclimatic insights, Quaternary Sci. Rev., 29, 1728–1756, 2010. 3. Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, Tech. rep., NOAA Technical Memorandum NESDIS NGDC-24, 2009. 4. Applegate, P. J., Kirchner, N., Stone, E. J., Keller, K., and Greve, R.: Preliminary assessment of model parametric uncertainty in projections of Greenland Ice Sheet behavior, The Cryosphere Discuss., 5, 3175–3205, https://doi.org/10.5194/tcd-5-3175-2011, 2011. 5. Axford, Y., Briner, J. P., Francis, D. R., Miller, G. H., Walker, I. R., and Wolfe, A. P.: Chironomids record terrestrial temperature changes throughout Arctic interglacials of the past 200,000 yr, Geol. Soc. Am. Bull., 123, 1275–1287, 2011.
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|