Work area monitoring in dynamic environments using multiple auto-aligning 3-D sensors

Author:

Wang Y.,Ewert D.,Meisen T.,Schilberg D.,Jeschke S.

Abstract

Abstract. Compared to current industry standards future production systems will be more flexible and robust and will adapt to unforeseen states and events. Industrial robots will interact with each other as well as with human coworkers. To be able to act in such a dynamic environment, each acting entity ideally needs complete knowledge of its surroundings, concerning working materials as well as other working entities. Therefore new monitoring methods providing complete coverage for complex and changing working areas are needed. While single 3-D sensors already provide detailed information within their field of view, complete coverage of a complete work area can only be achieved by relying on a multitude of these sensors. However, to provide useful information all data of each sensor must be aligned to each other and fused into an overall world picture. To be able to align the data correctly, the position and orientation of each sensor must be known with sufficient exactness. In a quickly changing dynamic environment, the positions of sensors are not fixed, but must be adjusted to maintain optimal coverage. Therefore, the sensors need to autonomously align themselves in real time. This can be achieved by adding defined markers with given geometrical patterns to the environment which can be used for calibration and localization of each sensor. As soon as two sensors detect the same markers, their relative position to each other can be calculated. Additional anchor markers at fixed positions serve as global reference points for the base coordinate system. In this paper we present a prototype for a self-aligning monitoring system based on a robot operating system (ROS) and Microsoft Kinect. This system is capable of autonomous real-time calibration relative to and with respect to a global coordinate system as well as to detect and track defined objects within the working area.

Publisher

Copernicus GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3