Abstract
Abstract. Factorisation (also known as “factor separation”) is widely used in the analysis of numerical simulations. It allows changes in properties of a system to be attributed to changes in multiple variables associated with that system. There are many possible factorisation methods; here we discuss three previously proposed factorisations that have been applied in the field of climate modelling: the linear factorisation, the Stein and Alpert (1993) factorisation, and the Lunt et al. (2012) factorisation. We show that, when more than two variables are being considered, none of these three methods possess all four properties of “uniqueness”, “symmetry”, “completeness”, and “purity”. Here, we extend each of these factorisations so that they do possess these properties for any number of variables, resulting in three factorisations – the “linear-sum” factorisation, the “shared-interaction” factorisation, and the “scaled-residual” factorisation. We show that the linear-sum factorisation and the shared-interaction factorisation reduce to be identical in the case of four or fewer variables, and we conjecture that this holds for any number of variables. We present the results of the factorisations in the context of three past studies that used the previously proposed factorisations.
Reference20 articles.
1. Alpert, P. and Sholokhman, T. (Eds.): Factor Separation in the Atmosphere:
Applications and Future Prospects, Cambridge University Press,
https://doi.org/10.1017/CBO9780511921414, 2011. a
2. Box, G. E. P., Hunter, J. S., and Hunter, W. G.: Statistics for Experimenters, 2nd Edn.,
John Wiley and Sons, 2005. a
3. Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J.,
and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for
near-future climates, P. Natl. Acad. Sci. USA, 115,
13288–13293, https://doi.org/10.1073/pnas.1809600115, 2018. a
4. Chandan, D.: Pliocene surface temperature data for Multi-variate factorisation methods, Scholars Portal Dataverse, V1, https://doi.org/10.5683/SP2/QGK5B0, 2020. a
5. Chandan, D. and Peltier, W. R.: Regional and global climate for the mid-Pliocene using the University of Toronto version of CCSM4 and PlioMIP2 boundary conditions, Clim. Past, 13, 919–942, https://doi.org/10.5194/cp-13-919-2017, 2017. a
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献