Model intercomparison of COSMO 5.0 and IFS 45r1 at kilometer-scale grid spacing
-
Published:2021-07-27
Issue:7
Volume:14
Page:4617-4639
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Zeman ChristianORCID, Wedi Nils P., Dueben Peter D.ORCID, Ban Nikolina, Schär ChristophORCID
Abstract
Abstract. The increase in computing power and recent model developments allow for the use of global kilometer-scale weather and climate models for routine forecasts. At these scales, deep convective processes can be partially resolved explicitly by the model dynamics. Next to horizontal resolution, other aspects such as the applied numerical methods, the use of the hydrostatic approximation, and time step size are factors that might influence a model's ability to resolve deep convective processes. In order to improve our understanding of the role of these factors, a model intercomparison between the nonhydrostatic COSMO model and the hydrostatic Integrated Forecast System (IFS) from ECMWF has been conducted. Both models have been run with different spatial and temporal resolutions in order to simulate 2 summer days over Europe with strong convection. The results are analyzed with a focus on vertical wind speed and precipitation. Results show that even at around 3 km horizontal grid spacing the effect of the hydrostatic approximation seems to be negligible. However, time step proves to be an important factor for deep convective processes, with a reduced time step generally allowing for higher updraft velocities and thus more energy in vertical velocity spectra, in particular for shorter wavelengths. A shorter time step is also causing an earlier onset and peak of the diurnal cycle. Furthermore, the amount of horizontal diffusion plays a crucial role for deep convection with more diffusion generally leading to larger convective cells and higher precipitation intensities. The study also shows that for both models the parameterization of deep convection leads to lower updraft and precipitation intensities and biases in the diurnal cycle with a precipitation peak which is too early.
Publisher
Copernicus GmbH
Reference114 articles.
1. Bacmeister, J. T., Eckermann, S. D., Newman, P. A., Lait, L., Chan, R. K.,
Loewenstein, M., Proffitt, M. H., and Gary, B. L.: Stratospheric horizontal
wavenumber spectra of winds, potential temperature, and atmospheric tracers
observed by high-altitude aircraft, J. Geophys. Res.-Atmos., 101, 9441–9470, https://doi.org/10.1029/95JD03835, 1996. a 2. Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M.,
and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction
with the COSMO Model: Description and Sensitivities, Mon. Weather Rev.,
139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a, b 3. Balsamo, G., Pappenberger, F., Dutra, E., Viterbo, P., and van den Hurk, B.: A
revised land hydrology in the ECMWF model: a step towards daily water flux
prediction in a fully-closed water cycle, Hydrol. Process., 25,
1046–1054, https://doi.org/10.1002/hyp.7808, 2011. a 4. Ban, N., Schmidli, J., and Schär, C.: Evaluation of the
convection-resolving regional climate modeling approach in decade-long
simulations, J. Geophys. Res.-Atmos., 119, 7889–7907,
https://doi.org/10.1002/2014JD021478, 2014. a, b, c, d 5. Barker, H. W., Cole, J. N. S., Morcrette, J.-J., Pincus, R.,
Räisänen, P., von Salzen, K., and Vaillancourt, P. A.: The Monte
Carlo Independent Column Approximation: an assessment using several global
atmospheric models, Q. J. Roy. Meteor. Soc.,
134, 1463–1478, https://doi.org/10.1002/qj.303, 2008. a
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|