Airborne measurements of gas and particle pollutants during CAREBeijing-2008

Author:

Zhang W.,Zhu T.ORCID,Yang W.,Bai Z.,Sun Y. L.,Xu Y.,Yin B.,Zhao X.

Abstract

Abstract. Measurements of gaseous pollutants – including ozone (O3), sulfur dioxide (SO2), nitrogen oxides (NOX = NO + NO2), carbon monoxide (CO), particle number concentrations (5.6–560 nm and 0.47–30 μm) – and meteorological parameters (T, RH, P) were conducted during the Campaigns of Air Quality Research in Beijing and Surrounding Regions in 2008 (CAREBeijing-2008), from 27 August through 13 October 2008. The data from a total 18 flights (70 h flight time) from near the surface to 2100 m altitude were obtained with a Yun-12 aircraft in the southern surrounding areas of Beijing (38–40° N, 114–118° E). The objectives of these measurements were to characterize the regional variation of air pollution during and after the Olympics of 2008, determine the importance of air mass trajectories and to evaluate of other factors that influence the pollution characteristics. The results suggest that there are primarily four distinct sources that influenced the magnitude and properties of the pollutants in the measured region based on back-trajectory analysis: (1) southerly transport of air masses from regions with high pollutant emissions, (2) northerly and northeasterly transport of less pollutant air from further away, (3) easterly transport from maritime sources where emissions of gaseous pollutant are less than from the south but still high in particle concentrations, and (4) the transport of air that is a mixture from different regions; that is, the air at all altitudes measured by the aircraft was not all from the same sources. The relatively long-lived CO concentration is shown to be a possible transport tracer of long-range transport from the northwesterly direction, especially at the higher altitudes. Three factors that influenced the size distribution of particles – i.e., air mass transport direction, ground source emissions and meteorological influences – are also discussed.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference44 articles.

1. Agarwal, J. K. and Sem, G. J.: Continuous flow, single-particle-counting condensation nucleus counter, J. Aerosol Sci., 11, 343–357, 1980.

2. Beijing Organizing Committee for the Games of the XXIX Olympic Games (BOCOG): Green Olympics in Beijing 2005, available at: http://en.beijing2008.cn/30/79/article212027930.shtml (last access: 5 January 2014), 2005.

3. Dickerson, R. R., Li, C., Li, Z., Marufu, L. T., Stehr, J. W., McClure, B., Krotkov, N., Chen, H., Wang, P., Xia, X., Ban, X., Gong, F., Yuan, J., and Yang, J.: Aircraft observations of dust and pollutants over northeast China: Insight into the meteorological mechanisms of transport, J. Geophys. Res., 112, D24S90, https://doi.org/10.1029/2007JD008999, 2007.

4. Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory), Model access via NOAA ARL READY Website, http://www.arl.noaa.gov/HYSPLIT.php (last access: 5 January 2014), NOAA Air Resources Laboratory, College Park, MD, 2013.

5. Elperin, T., Fominykh, A., Krasovitov, B., and Vikhansky, A.: Effect of rain scavenging on altitudinal distribution of soluble gaseous pollutants in the atmosphere, Atmos. Environ., 45, 2427–-2433, 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3