Temporal variations in the flow of a large Antarctic ice-stream controlled by tidally induced changes in the subglacial water system
Author:
Rosier S. H. R.ORCID, Gudmundsson G. H.ORCID, Green J. A. M.ORCID
Abstract
Abstract. Observations show that the flow of Rutford Ice Stream (RIS) is strongly modulated by the ocean tides, with the strongest tidal response at the 14.77 day tidal period (Msf). This is striking because this period is absent in the tidal forcing. A number of mechanisms have been proposed to account for this effect, yet previous modeling studies have struggled to match the observed large amplitude and decay length scale. We use a nonlinear 3-D viscoelastic full-Stokes model of ice-stream flow to investigate this open issue. We find that the long period Msf modulation of ice-stream velocity observed in data cannot be reproduced quantitatively without including a coupling between basal sliding and tidal subglacial water pressure variations. Furthermore, the subglacial water system must be highly conductive and at low effective pressure, and the relationship between sliding velocity and effective pressure highly nonlinear in order for the model results to match GPS measurements. Hydrological and basal sliding model parameters that produced a best fit to observations were a mean effective pressure N of 105 kPa, subglacial drainage system conductivity K of 7 × 109 m2d-1, with sliding law exponents m = 3 and q =10. Coupled model results show the presence of tides result in a ~ 12% increase in mean surface velocity. Observations of tidally-induced variations in flow of ice-streams provide stronger constraints on basal sliding processes than provided by any other set of measurements.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Reference29 articles.
1. A\\dh\\!algeirsdóttir, G., Smith, A. M., Murray, T., King, M. A., Makinson, K., Nicholls, K. W., and Behar, A. E.: Tidal influence on Rutford Ice Stream, West Antarctica: observations of surface flow and basal processes from closely-spaced GPS and passive seismic stations, J. Glaciol., 54, 715–724, https://doi.org/10.3189/002214308786570872, 2008. 2. Anandakrishnan, S. and Alley, R.: Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., 102, 15183–15196, https://doi.org/10.1029/97JB01073, 1997. 3. Anandakrishnan, S., Voigt, D. E., and Alley, R. B.: Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf, Geophys. Res. Lett., 30, 1361, https://doi.org/10.1029/2002GL016329, 2003. 4. Bindschadler, R. A., King, M. A., Alley, R. B., Anandakrishnan, S., and Padman, L.: Tidally controlled stick-slip discharge of a West Antasrctic ice stream, Science, 301, 1087–1089, https://doi.org/10.1126/science.1087231, 2003a. 5. Bindschadler, R. A., Vornberger, P. L., King, M. A., and Padman, L.: Tidally driven stickslip motion in the mouth of Whillans Ice Stream, Antarctica, Ann. Glaciol., 36, 263–272, https://doi.org/10.3189/172756403781816284, 2003b.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|