The impact of weather and atmospheric circulation on O<sub>3</sub> and PM<sub>10</sub> levels at a rural mid-latitude site

Author:

Demuzere M.,Trigo R. M.,Vila-Guerau de Arellano J.,van Lipzig N. P. M.

Abstract

Abstract. In spite of the strict EU regulations, concentrations of surface ozone and PM10 often exceed the pollution standards for the Netherlands and Europe. Their concentrations are controlled by (precursor) emissions, social and economic developments and a complex combination of meteorological actors. This study tackles the latter, and provides insight in the meteorological processes that play a role in O3 and PM10 levels in rural mid-latitudes sites in the Netherlands. The relations between meteorological actors and air quality are studied on a local scale based on observations from four rural sites and are determined by a comprehensive correlation analysis and a multiple regression (MLR) analysis in 2 modes, with and without air quality variables as predictors. Furthermore, the objective Lamb Weather Type approach is used to assess the influence of the large-scale circulation on air quality. Keeping in mind its future use in downscaling future climate scenarios for air quality purposes, special emphasis is given to an appropriate selection of the regressor variables readily available from operational meteorological forecasts or AOGCMs (Atmosphere-Ocean coupled General Circulation Models). The regression models perform satisfactory, especially for O3, with an (R2 of 57.0% and 25.0% for PM10. Including previous day air quality information increases significantly the models performance by 15% (O3) and 18% (PM10). The Lamb weather types show a seasonal distinct pattern for high (low) episodes of average O3 and PM10 concentrations, and these are clear related with the meteorology-air quality correlation analysis. Although using a circulation type approach can provide important additional physical relations forward, our analysis reveals the circulation method is limited in terms of short-term air quality forecast for both O3 and PM10 (R2 between 0.12 and 23%). In summary, it is concluded that the use of a regression model is more promising for short-term downscaling from climate scenarios than the use of a weather type classification approach.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3