The pulsed nature of the nightside contribution to polar cap convection: repetitive substorm activity under steady interplanetary driving

Author:

Sandholt P. E.,Andalsvik Y. L.,Farrugia C. J.

Abstract

Abstract. The aim of this study is to investigate the relative contributions of dayside and nightside processes to the spatial and temporal structure of polar cap plasma convection. The central parameter is the cross-polar cap potential (CPCP). Selecting a 10-h-long interval of stable interplanetary driving by an interplanetary CME (ICME), we are able to distinguish between the dayside and nightside sources of the convection. The event was initiated by an abrupt enhancement of the magnetopause (MP) reconnection rate triggered by a southward turning of the ICME magnetic field. This was followed by a long interval (10 h) of steady and strong driving. Under the latter condition a long series of electrojet intensifications was observed which recurred at 50 min intervals. The detailed temporal structure of polar cap convection in relation to polar cap contraction events is obtained by combining continuous ground observations of convection-related magnetic deflections (including polar cap magnetic indices in the Northern and Southern Hemispheres, PCN and PCS) and the more direct, but lower-resolution ion drift data obtained from a satellite (DMSP F13) in polar orbit. The observed PCN enhancements combined with DMSP satellite observations (F13 and F15 data) of polar cap contractions during the evolution of selected substorm expansions allowed us to estimate the CPCP enhancements (25%) associated with individual events in the series. Ground-satellite conjunctions are further used to investigate the spatial structure of polar cap convection, i.e., the homogeneous plasma flow in the centre (Vi ≤ 1 km s−1) versus channels of enhanced antisunward flows (Vi ≥ 1 km s−1) along the periphery of the polar cap. We emphasise the temporal structure of these polar cap flow phenomena in relation to the prevailing solar wind forcing and the repetitive substorm activity.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3