Wave influence on polar mesosphere summer echoes above Wasa: experimental and model studies

Author:

Dalin P.,Kirkwood S.,Hervig M.,Mihalikova M.,Mikhaylova D.,Wolf I.,Osepian A.

Abstract

Abstract. Comprehensive analysis of the wave activity in the Antarctic summer mesopause is performed using polar mesospheric summer echoes (PMSE) measurements for December 2010–January 2011. The 2-day planetary wave is a statistically significant periodic oscillation in the power spectrum density of PMSE power. The strongest periodic oscillation in the power spectrum belongs to the diurnal solar tide; the semi-diurnal solar tide is found to be a highly significant harmonic oscillation as well. The inertial-gravity waves are extensively studied by means of PMSE power and wind components. The strongest gravity waves are observed at periods of about 1, 1.4, 2.5 and 4 h, with characteristic horizontal wavelengths of 28, 36, 157 and 252 km, respectively. The gravity waves propagate approximately in the west-east direction over Wasa (Antarctica). A detailed comparison between theoretical and experimental volume reflectivity of PMSE, measured at Wasa, is made. It is demonstrated that a new expression for PMSE reflectivity derived by Varney et al. (2011) is able to adequately describe PMSE profiles both in the magnitude and in height variations. The best agreement, within 30%, is achieved when mean values of neutral atmospheric parameters are utilized. The largest contribution to the formation and variability of the PMSE layer is explained by the ice number density and its height gradient, followed by wave-induced perturbations in buoyancy period and the turbulent energy dissipation rate.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3