HF radar observations of ionospheric backscatter during geomagnetically quiet periods

Author:

Kane T. A.,Makarevich R. A.,Devlin J. C.

Abstract

Abstract. The quiet-time coherent backscatter from the F-region observed by the Tasman International Geospace Environment Radar (TIGER) Bruny Island HF radar is analysed statistically in order to determine typical trends and controlling factors in the ionospheric echo occurrence. A comparison of the F-region peak density values from the IRI-2007 model and ionosonde measurements in the vicinity of the radar's footprint shows a very good agreement, particularly at subauroral and auroral latitudes, and model densities within the radar's footprint are used in the following analyses. The occurrence of F-region backscatter is shown to exhibit distinct diurnal, seasonal and solar cycle variations and these are compared with model trends in the F-region peak electron density and Pedersen conductance of the underlying ionosphere. The solar cycle effects in occurrence are demonstrated to be strong and more complex than a simple proportionality on a year-to-year basis. The diurnal and seasonal effects are strongly coupled to each other, with diurnal trends exhibiting a systematic gradual variation from month to month that can be explained when both electron density and conductance trends are considered. During the night, the echo occurrence is suggested to be controlled directly by the density conditions, with a direct proportionality observed between the occurrence and peak electron density. During the day, the echo occurrence appears to be controlled by both conductance and propagation conditions. It is shown that the range of echo occurrence values is smaller for larger conductances and that the electron density determines what value the echo occurrence takes in that range. These results suggest that the irregularity production rates are significantly reduced by the highly conducting E layer during the day while F-region density effects dominate during the night.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3