Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

Author:

Maggiolo R.,Echim M.,Simon Wedlund C.,Zhang Y.,Fontaine D.,Lointier G.,Trotignon J.-G.

Abstract

Abstract. On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi-static acceleration of electrons that generate a polar cap arc as they precipitate in the ionosphere. The detailed observations of the acceleration region by Cluster and the large scale image of the polar cap arc provided by TIMED are two different features of the same phenomenon. Combined together, they bring new light on the configuration of the high-latitude magnetosphere during prolonged periods of Northward IMF. Possible implications of the modelling results for optical observations of polar cap arcs are also discussed.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. First 3D hybrid-Vlasov global simulation of auroral proton precipitation and comparison with satellite observations;Journal of Space Weather and Space Climate;2023

2. Joint Cluster/Ground‐Based Studies in the First 20 Years of the Cluster Mission;Journal of Geophysical Research: Space Physics;2022-08

3. Energetic particle dynamics, precipitation, and conductivity;Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System;2022

4. Solar and Geomagnetic Activity Impact on Occurrence and Spatial Size of Cold and Hot Polar Cap Patches;Geophysical Research Letters;2021-09-12

5. Observations of Closed Magnetic Flux Embedded in the Lobes During Periods of Northward IMF;Journal of Geophysical Research: Space Physics;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3