Global characteristics of the lunar tidal modulation of the equatorial electrojet derived from CHAMP observations

Author:

Lühr H.,Siddiqui T. A.,Maus S.

Abstract

Abstract. It has been known since many decades that lunar tide has an influence on the strength of the equatorial electrojet (EEJ). There has, however, never been a comprehensive study of the tidal effect on a global scale. Based on the continuous magnetic field measurements by the CHAMP satellite over 10 years it is possible to investigate the various aspects of lunar effects on the EEJ. The EEJ intensity is enhanced around times when the moon is overhead or at the antipode. This effect is particularly strong around noon, shortly after new and full moon. The lunar tide manifests itself as a semi-diurnal wave that precesses through all local times within one lunar month. The largest tidal amplitudes are observed around December solstice and smallest around June solstice. The tidal wave crest lags behind the moon phase. During December this amounts to about 4 days while it is around 2 days during other times of the year. We have not found significant longitudinal variations of the lunar influence on the EEJ. When comparing the average EEJ amplitude at high solar activity with that during periods of solar minimum conditions a solar cycle dependence can be found, but the ratio between tidal amplitude and EEJ intensity stays the same. Actually, tidal signatures standout clearer during times of low solar activity. We suggest that the tidal variations are caused by a current system added to the EEJ rather than by modulating the EEJ. Gravitational forcing of the lower atmosphere by the moon and the sun is assumed to be the driver of an upward propagating tidal wave. The larger tidal amplitudes around December solstice can be related to stratospheric warming events which seem to improve the conditions for upward propagation. The results described here have to large extent been presented as a Julius-Bartels Medal Lecture during the General Assembly 2011 of the European Geosciences Union.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference24 articles.

1. Alken, P. and Maus, S.: Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite measurements, J. Geophys. Res., 112, A09305, https://doi.org/10.1029/2007JA012524, 2007.

2. Bartels, J.: Aufschlüsse über die Ionosphäre aus der Analyse sonnen- und mond-tägiger erdmagnetischer Schwankungen, Z. Geophys., 12, 368–378, 1936.

3. Bartels, J. and Johnston, H. F.: Geomagnetic tides in horizontal intensity at Huancayo, Part I, terrestrial magnetism and atmospheric electricity, J. Geophys. Res., 45, 269–308, 1940.

4. Bartels, J. and Kertz, W.: Gezeitenartige Schwingungen der Atmosphäre, in: Landoldt-Börnstein, Astronomie und Geophysik, edited by: Bartel, J. and Ten Bruggencate, P., pp. 674–685, Springer, Berlin-Göttingen-Heidelberg, 1952.

5. Chapman, S. and Lindzen, R.: Atmospheric Tides, pp. 66–105, Reidel, Dordrecht, Holland, 1970.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3