Acoustophoresis in suspensions with local and time-discrete sound fields based on the time reversal technique
-
Published:2022-04-08
Issue:1
Volume:11
Page:117-128
-
ISSN:2194-878X
-
Container-title:Journal of Sensors and Sensor Systems
-
language:en
-
Short-container-title:J. Sens. Sens. Syst.
Author:
Hörnlein Philipp,Wöckel Sebastian,Arndt Hendrik,Auge Jörg
Abstract
Abstract. In this paper, a new approach of three-dimensional acoustic particle manipulation (acoustophoresis) in closed and liquid-filled vessels based on the time reversal technique is discussed. Based on simulation studies, this work investigates the technical prerequisites to achieve appropriate acoustic radiation forces (ARFs) for the manipulation of small particles with the time reversal method by utilizing multiple reflections in a closed vessel. The time-discrete and localized acoustic pressure field required for this purpose is generated by a time reversal mirror composed of 24 piezoceramic transducers. The paper also gives an outlook on practical evaluation of the simulation results based on a demonstrator setup.
Publisher
Copernicus GmbH
Subject
Electrical and Electronic Engineering,Instrumentation
Reference28 articles.
1. Antfolk, M., Kim, S. H., Koizumi, S., Fujii, T., and Laurell, T.: Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system, Sci. Rep., 7, 1–12, https://doi.org/10.1038/srep46507, 2017. 2. Augustsson, P., Barnkob, R., Grenvall, C., Deierborg, T., Brundin, P., Bruus, H., and Laurell, T.: Measuring the acoustophoretic contrast factor of living cells in microchannels, in: Proceedings of the 14. International Conference on Miniaturized Systems for Chemistry and Life Sciences, 3–7 October 2010, Groningen, the Netherlands, 1337–1339, 2010. 3. Baudoin, M., Gerbedoen, J.-C., Riaud, A., Matar, O.-B., Smagin, N., and Thomas, J.-L.: Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers, Science Advances, 5, 1–7, https://doi.org/10.1126/sciadv.aav1967, 2019. 4. Cassereau, D. and Fink, M.: Time-Reversal of Ultrasonic Fields – Part III: Theory of the Closed Time-Reversal Cavity, IEEE T. Ultrason. Ferr., 39, 579–592, https://doi.org/10.1109/58.156176, 1992. 5. Chitale, K. C., Presz, W., Ross-Johnsrud, B. P., Hyman, M., Lamontagne, M., and Lipkens, B.: Particle manipulation using macroscale angled ultrasonic standing waves, in: Proceedings of Meetings on Acoustics, Acoustical Society of America 173rd Meeting of Acoustical Society of America and 8th Forum Acusticum, Boston, 25–29 June 2017, 045004, https://doi.org/10.1121/2.0000652, 2017.
|
|