In situ monitoring of used-sand regeneration in foundries by impedance spectroscopy

Author:

Bifano Luca,Weider Marco,Fischerauer Alice,Wolf Gotthard,Fischerauer Gerhard

Abstract

Abstract. This work deals with the impedimetric monitoring of used-sand regeneration in the foundry industry. During the regeneration of used sand, a quartz sand similar to new sand is produced from already used molding and core sand, which especially serves to produce new cores. We explore whether the regeneration progress can be assessed in situ based on measured impedance spectra and their features. The impedances of plate capacitors filled with different typical used-sand mixtures, consisting of quartz sand, coal dust, and bentonite, were repeatedly measured in a frequency range from 500 Hz to 1 MHz. The reproducibility of the measurements proved to be sufficient for practical applications. The mean impedances were plotted in Nyquist diagrams. From these plots, systematic impedance–composition correlations could be determined for two of the three component systems. Conclusions about the regeneration state could be drawn from the impedance curves by introducing various features. These were the median, the mean, and the standard deviation of the frequency-dependent resistance and reactance. With these indicators, it was then possible to establish one-to-one relations between the material composition of the molding materials and the impedance measurement. In field measurements on regenerated used sands, this observation was confirmed, and the regeneration progress was observed on the basis of the impedimetrically determined characteristic data.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Copernicus GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3