Environmental impacts of shipping in 2030 with a particular focus on the Arctic region

Author:

Dalsøren S. B.,Samset B. H.ORCID,Myhre G.ORCID,Corbett J. J.,Minjares R.,Lack D.,Fuglestvedt J. S.

Abstract

Abstract. We quantify the concentrations changes and Radiative Forcing (RF) of short-lived atmospheric pollutants due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. We use high resolution ship emission inventories for the Arctic that are more suitable for regional scale evaluation than those used in former studies. A chemical transport model and a RF model are used to evaluate the time period 2004–2030, when we expect increasing traffic in the Arctic region. Two datasets for ship emissions are used that characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: a high (HIGH) scenario and a low scenario with Maximum Feasible Reduction (MFR) of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 we find increased concentrations of all pollutants in large parts of the Arctic. Net global RFs from 2004–2030 of 53 mW m−2 (HIGH) and 73 mW m−2 (MFR) are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts with the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. The Arctic RF is largest in the HIGH scenario. In the HIGH scenario ozone dominates the RF during the transit season (August–October). RF due to BC in air, and snow and ice becomes significant during Arctic spring. For the HIGH scenario the net Arctic RF during spring is 5 times higher than in winter.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3