CO2-driven and orbitally driven oxygen isotope variability in the Early Eocene

Author:

Campbell JuliaORCID,Poulsen Christopher J.,Zhu JiangORCID,Tierney Jessica E.,Keeler Jeremy

Abstract

Abstract. Paleoclimate reconstructions of the Early Eocene provide important data constraints on the climate and hydrologic cycle under extreme warm conditions. Available terrestrial water isotope records have been primarily interpreted to signal an enhanced hydrologic cycle in the Early Eocene associated with large-scale warming induced by high atmospheric CO2. However, orbital-scale variations in these isotope records have been difficult to quantify and largely overlooked, even though orbitally driven changes in solar irradiance can impact temperature and the hydrologic cycle. In this study, we fill this gap using water isotope–climate simulations to investigate the orbital sensitivity of Earth's hydrologic cycle under different CO2 background states. We analyze the relative difference between climatic changes resulting from CO2 and orbital changes and find that the seasonal climate responses to orbital changes are larger than CO2-driven changes in several regions. Using terrestrial δ18O and δ2H records from the Paleocene–Eocene Thermal Maximum (PETM), we compare our modeled isotopic seasonal range to fossil evidence and find approximate agreement between empirical and simulated isotopic compositions. The limitations surrounding the equilibrated snapshot simulations of this transient event and empirical data include timing and time interval discrepancies between model and data, the preservation state of the proxy, analytical uncertainty, the relationship between δ18O or δ2H and environmental context, and vegetation uncertainties within the simulations. In spite of the limitations, this study illustrates the utility of fully coupled, isotope-enabled climate models when comparing climatic changes and interpreting proxy records in times of extreme warmth.

Funder

Directorate for Geosciences

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3