Characteristics of the electrojet during intense magnetic disturbances

Author:

Gromova Liudmila I.,Förster Matthias,Feldstein Yakov I.,Ritter Patricia

Abstract

Abstract. Hall current variations in different time sectors during six magnetic storms from the summer seasons in 2003 and 2005 (Ritter, 2018) are examined, namely three storms in the day–night meridional sector and three storms in the dawn–dusk sector. The sequence of the phenomena, their structure and positions, and the strength of the polar (PE) and the auroral (AE) Hall electrojets were investigated using scalar magnetic field measurements obtained from the CHAllenging Minisatellite Payload (CHAMP) satellite in accordance with the study of Ritter et al. (2004a). We analyzed the correlations of the PE and AE as well as the obtained regression relations of the magnetic latitude MLat and the electrojet current intensity I with auroral and ring current activity, the interplanetary magnetic field, and the Newell et al. (2007) coupling function for the state of the solar wind. The following typical characteristics of the electrojets were revealed: The PE appears in the daytime sector at MLat ∼80∘–73∘, with a westward or an eastward direction depending on the interplanetary magnetic field (IMF) By component (By < 0 nT or By > 0 nT). Changes in the current flow direction in the PE can occur repeatedly during the storm, but only due to changes in the IMF By orientation. The PE increases with the intensity of the IMF By component from I∼0.4 A m−1 for By∼0 nT up to I∼1.0 A m−1 for By∼23 nT. The MLat position of the PE does not depend on the direction and intensity of the By component. There is no connection between MLat and I in the PE and the symmetric part of the magnetospheric ring current (index SymH). There is a correlation between I in the PE and the AsyH index, but only a very weak interconnection of this index with the MLat of the PE. Substorms occurring before the storm's main phase are accompanied by the appearance of an eastward electrojet (EE) at MLat ∼64∘ as well as that of a westward electrojet (WE). In the nighttime sector, a WE appears at MLat ∼64∘. During the main phase both electrojets persist. The daytime EE and the nighttime WE shift toward sub-auroral latitudes of MLat ∼56∘ and grow in intensity up to I∼1.5 A m−1. The WE is then located about 6∘ closer to the pole than the EE during evening hours and about 2∘–3∘ closer during daytime hours.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference43 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3