Measurements of vertical electric field in a thunderstorm in a Chinese inland plateau

Author:

Zhang Tinglong,Yu Hai,Zhou Fangcong,Chen Jie,Zhang Maohua

Abstract

Abstract. A balloon-borne instrument was designed to measure the electric field in thunderstorms. One case of thunderstorm was observed in the Pingliang region (35.57∘ N, 106.59∘ E; and 1620 m above sea level, a.s.l.) of a Chinese inland plateau, through penetration by the balloon-borne sounding in the early period of the mature stage. Results showed that the sounding passed through seven predominant charge regions. A negative charge region with a depth of 800 m located near the surface, and a positive charge region appeared in the warm cloud region; their mean charge densities were −0.44 ± 0.136 and 0.43 ± 0.103 nC m−3, respectively. Five charge regions existed in the region colder than 0 ∘C, and charge polarity alternated in a vertical direction with a positive charge at the lowest region. The mean charge densities for these five regions were 0.40±0.037 nC m−3 (−9.5 to −4 ∘C), -0.63±0.0107 nC m−3 (−18 to −14 ∘C), 0.35±0.063 nC m−3 (−27 to −18 ∘C), -0.36±0.057 nC m−3 (−34 to −27 ∘C), and 0.24±0.06 nC m−3 (−38 to −34 ∘C). We speculated that the two independent positive charge regions in the lower portion are the same charge region with a weak charge density layer in the middle. The analysis showed that the real charge structure of the thunderstorm is more complex than the tripole model, and the lower dipole is the most intensive charge region in the thunderstorm. Keywords. Meteorology and atmospheric dynamics (atmospheric electricity)

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3