Report of a large depletion in the ozone layer over southern Brazil and Uruguay by using multi-instrumental data

Author:

Bresciani Caroline,Bittencourt Gabriela Dornelles,Bageston José Valentin,Pinheiro Damaris Kirsch,Schuch Nelson Jorge,Bencherif Hassan,Leme Neusa Paes,Peres Lucas VazORCID

Abstract

Abstract. Ozone is one of the chemical compounds that form part of the atmosphere. It plays a key role in the stratosphere where the “ozone layer” is located and absorbs large amounts of ultraviolet radiation. However, during austral spring (August–November), there is a massive destruction of the ozone layer, which is known as the “Antarctic ozone hole”. This phenomenon decreases ozone concentration in that region, which may affect other regions in addition to the polar one. This anomaly may also reach mid-latitudes; hence, it is called the “secondary effect of the Antarctic ozone hole”. Therefore, this study aims to identify the passage of an ozone secondary effect (OSE) event in the region of the city of Santa Maria – RS (29.68∘ S, 53.80∘ W) by means of a multi-instrumental analysis using the satellites TIMED/SABER, AURA/MLS, and OMI-ERS. Measurements were made in São Martinho da Serra/RS – Brazil (29.53∘ S, 53.85∘ W) using a sounding balloon and a Brewer Spectrophotometer. In addition, the present study aims to describe and analyse the influence that this stratospheric ozone reduction has on temperatures presented by these instruments, including data collected through the radio occultation technique. The event was first identified by the AURA/MLS satellite on 19 October 2016 over Uruguay. This reduction in ozone concentration was found by comparing the climatology for the years 1996–1998 for the state of Rio Grande do Sul, which is close to Uruguay. This event was already observed in Santa Maria/RS-Brazil on 20 October 2016 as presented by the OMI-ERS satellite and the Brewer Spectrophotometer. Moreover, a significant decrease was reported by the TIMED/SABER satellite in Uruguay. On 21 October, the poor ozone air mass was still over the region of interest, according to the OMI-ERS satellite, data from the sounding balloon launched in Santa Maria/RS-Brazil, and measurements made by the AURA/MLS satellite. Furthermore, the influence of ozone on the stratosphere temperature was observed during this period. Despite a continuous decrease detected in height, the temperature should have followed an increasing pattern in the stratospheric layer. Finally, the TIMED/SABER and OMI-ERS satellites showed that on 23 October, the air mass with low ozone concentration was moving away, and its layer, as well as the temperature, in the stratosphere was re-established. Keywords. Atmospheric composition and structure (middle atmosphere – composition and chemistry; instruments and techniques)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3