A stochastic rainfall model for the assessment of regional water resource systems under changed climatic condition

Author:

Fowler H. J.,Kilsby C. G.,O’Connell P. E.

Abstract

Abstract. A stochastic model is developed for the synthesis of daily precipitation using conditioning by weather types. Daily precipitation statistics at multiple sites within the region of Yorkshire, UK, are linked to objective Lamb weather types (LWTs) and used to split the region into three distinct precipitation sub-regions. Using a variance minimisation criterion, the 27 LWTs are clustered into three physically realistic groups or ‘states'. A semi-Markov chain model is used to synthesise long sequences of weather states, maintaining the observed persistence and transition probabilities. The Neyman-Scott Rectangular Pulses (NSRP) model is then fitted for each weather state, using a defined summer and winter period. The combined model reproduces key aspects of the historic precipitation regime at temporal resolutions down to the hourly level. Long synthetic precipitation series are useful in the sensitivity analysis of water resource systems under current and changed climatic conditions. This methodology enables investigation of the impact of variations in weather type persistence or frequency. In addition, rainfall model statistics can be altered to simulate instances of increased intensity or proportion of dry days for example, for individual weather groups. The input of such data into a water resource model, simulating potential atmospheric circulation changes, will provide a valuable tool for future planning of water resource systems. The ability of the model to operate at an hourly level also allows its use in a wider range of hydrological impact studies, e.g. variations in river flows, flood risk estimation etc. Keywords: water resources; climate change; impacts; stochastic rainfall model; Lamb weather types

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3