How far can the statistical error estimation problem be closed by collocated data?

Author:

Vogel AnnikaORCID,Ménard Richard

Abstract

Abstract. Accurate specification of the error statistics required for data assimilation remains an ongoing challenge, partly because their estimation is an underdetermined problem that requires statistical assumptions. Even with the common assumption that background and observation errors are uncorrelated, the problem remains underdetermined. One natural question that could arise is as follows: can the increasing amount of overlapping observations or other datasets help to reduce the total number of statistical assumptions, or do they introduce more statistical unknowns? In order to answer this question, this paper provides a conceptual view on the statistical error estimation problem for multiple collocated datasets, including a generalized mathematical formulation, an illustrative demonstration with synthetic data, and guidelines for setting up and solving the problem. It is demonstrated that the required number of statistical assumptions increases linearly with the number of datasets. However, the number of error statistics that can be estimated increases quadratically, allowing for an estimation of an increasing number of error cross-statistics between datasets for more than three datasets. The presented generalized estimation of full error covariance and cross-covariance matrices between datasets does not necessarily accumulate the uncertainties of assumptions among error estimations of multiple datasets.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3