The role of tropical upwelling in explaining discrepancies between recent modeled and observed lower-stratospheric ozone trends

Author:

Davis Sean M.ORCID,Davis NicholasORCID,Portmann Robert W.ORCID,Ray EricORCID,Rosenlof KarenORCID

Abstract

Abstract. Several analyses of satellite-based ozone measurements have reported that lower-stratospheric ozone has declined since the late 1990s. In contrast to this, lower-stratospheric ozone was found to be increasing in specified-dynamics (SD) simulations from the Whole Atmosphere Community Climate Model (WACCM-SD) despite the fact that these simulations are expected to represent the real-world dynamics and chemistry relevant to stratospheric ozone changes. This paper seeks to explain this specific model and observational discrepancy and to more generally examine the relationship between tropical lower-stratospheric upwelling and lower-stratospheric ozone. This work shows that, in general, the standard configuration of WACCM-SD fails to reproduce the tropical upwelling changes present in its input reanalysis fields. Over the period 1998 to 2016, WACCM-SD has a spurious negative upwelling trend that induces a positive near-global lower-stratospheric column ozone trend and that accounts for much of the apparent discrepancy between modeled and observed ozone trends. Using a suite of SD simulations with alternative nudging configurations, it is shown that short-term (∼ 2-decade) lower-stratospheric ozone trends scale linearly with short-term trends in tropical lower-stratospheric upwelling near 85 hPa. However, none of the simulations fully capture the recent ozone decline, and the ozone and upwelling scaling in the WACCM simulations suggests that a large short-term upwelling trend (∼ 6 % decade−1) would be needed to explain the observed satellite trends. The strong relationship between ozone and upwelling, coupled with both the large range of reanalysis upwelling trend estimates and the inability of WACCM-SD simulations to reproduce upwelling from their input reanalyses, severely limits the use of SD simulations for accurately reproducing recent ozone variability. However, a free-running version of WACCM using only surface boundary conditions and a nudged quasi-biennial oscillation produces a positive decadal-scale lower-stratospheric upwelling trend and a negative near-global lower-stratospheric column ozone trend that is in closest agreement with the ozone observations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3