The Holton–Tan mechanism under stratospheric aerosol intervention
-
Published:2023-03-31
Issue:6
Volume:23
Page:3799-3818
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Karami KhalilORCID, Garcia RolandoORCID, Jacobi ChristophORCID, Richter Jadwiga H., Tilmes SimoneORCID
Abstract
Abstract. The teleconnection between the quasi-biennial oscillation (QBO) and the Arctic stratospheric polar vortex, or the Holton–Tan (HT) relationship, may change in a warmer climate or one with stratospheric aerosol intervention (SAI) compared to the present-day climate (PDC). Our results from an Earth system model indicate that, under both global warming (based on RCP8.5 emission scenario) and SAI scenarios, the HT relationship weakens in early winter (November–December), although it is closer to PDC under SAI than under the RCP8.5 scenario. In contrast, the HT relationship in the middle to late winter period (January–February) does not change considerably
in response to either RCP8.5 or SAI scenarios compared to PDC. While the weakening of the HT relationship under the RCP8.5 scenario is likely due to the weaker QBO wind amplitudes at the Equator, another physical mechanism must be responsible for the weaker HT relationship under SAI scenarios, since the amplitude of the QBO wind is comparable to the PDC. The strength of the polar vortex does not change under the RCP8.5 scenario compared to PDC, but it becomes stronger under SAI; we attribute the weakening of the HT relationship under SAI to a stronger polar vortex. In general, the changes in the HT relationship cannot be explained by changes to the critical line; the changes in the residual circulation (particularly due to the gravity wave contributions) are important in explaining the changes in the HT relationship under RCP8.5 and SAI scenarios.
Funder
Deutsche Forschungsgemeinschaft National Center for Atmospheric Research
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference84 articles.
1. Andrews, M. B., Knight, J. R., Scaife, A. A., Lu, Y., Wu, T., Gray, L. J., and Schenzinger, V.: Observed and simulated teleconnections between the
stratospheric quasi-biennial oscillation and northern hemisphere winter atmospheric circulation, J. Geophys. Res.-Atmos., 124,
1219–1232, 2019. a 2. Andrews, D., Holton, J., and Leovy, C. B.: Middle atmosphere dynamics, Academic press, ISBN: 9780120585762, 1987. a, b 3. Anstey, J. A. and Shepherd, T. G.: High-latitude influence of the quasi-biennial oscillation, Q. J. Roy. Meteorol. Soc., 140, 1–21, 2014. a 4. Baldwin, M., Gray, L., Dunkerton, T., Hamilton, K., Haynes, P., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229, 2001. a, b 5. Butler, A., Charlton-Perez, A., Domeisen, D. I., Garfinkel, C., Gerber, E. P., Hitchcock, P., Karpechko, A. Y., et al.: Sub-seasonal predictability and the stratosphere, Sub-seasonal to seasonal prediction, Elsevier, 223–241,
ISBN: 9780128117149, https://doi.org/10.1016/B978-0-12-811714-9.00011-5, 2019. a
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|