Boundary layer moisture variability at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory during marine conditions

Author:

Cadeddu Maria P.,Ghate Virendra P.ORCID,Turner David D.ORCID,Surleta Thomas E.

Abstract

Abstract. Boundary layer moisture variability at the Eastern North Atlantic (ENA) site during marine conditions is examined at monthly and daily timescales using 5 years of ground-based observations and output from the European Center for Medium range Weather Forecast (ECMWF) reanalysis model. The annual cycle of the mixed-layer total water budgets is presented to estimate the relative contribution of large-scale advection, local moisture tendency, entrainment, and precipitation to balance the moistening due to surface latent heat flux on monthly timescales. When marine conditions prevail, advection of colder and dry air from the north acts as an important moisture sink (∼ 50 % of the overall budget) during fall and winter driving the seasonality of the budget. Entrainment and precipitation contribute to the drying of the boundary layer (∼ 25 % and ∼ 15 % respectively), and the local change in moisture contributes to a small residual part. On a daily temporal scale, moist and dry mesoscale columns of vapor (∼ 10 km) are analyzed during 10 selected days of precipitating stratocumulus clouds. Adjacent moist and dry columns present distinct mesoscale features that are strongly correlated with clouds and precipitation. Dry columns adjacent to moist columns have more frequent and stronger downdrafts immediately below the cloud base. Moist columns have more frequent updrafts, stronger cloud-top cooling, and higher liquid water path and precipitation compared to the dry columns. This study highlights the complex interaction between large-scale and local processes controlling the boundary layer moisture and the importance of spatial distribution of vapor to support convection and precipitation.

Funder

Office of Science

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3