A high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil fuel, and monsoon sources
-
Published:2023-03-17
Issue:5
Volume:23
Page:3325-3346
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Yu Xueying, Millet Dylan B.ORCID, Henze Daven K., Turner Alexander J.ORCID, Delgado Alba LorenteORCID, Bloom A. Anthony, Sheng JianxiongORCID
Abstract
Abstract. We interpret space-borne observations from the TROPOspheric Monitoring Instrument (TROPOMI) in a multi-inversion framework to characterize the 2018–2019 global methane budget. Evaluation of the inverse solutions indicates that simultaneous source + sink optimization using methane observations alone remains an ill-posed problem – even with the dense TROPOMI sampling coverage. Employing remote carbon monoxide (CO) and hydroxyl radical (OH) observations with independent methane measurements to distinguish between candidate solutions, we infer from TROPOMI a global methane source of 587 (586–589) Tg yr−1 and sink of 571 Tg yr−1 for our analysis period. We apply a new downscaling method to map the derived monthly emissions to 0.1∘ × 0.1∘ resolution, using the results to uncover key gaps in the prior methane budget. The TROPOMI data point to an underestimate of tropical wetland emissions (a posteriori increase of +13 % [6 %–25 %] or 20 [7–25] Tg yr−1), with adjustments following regional hydrology. Some simple wetland parameterizations represent these patterns as accurately as more sophisticated process-based models. Emissions from fossil fuel activities are strongly underestimated over the Middle East (+5 [2–6] Tg yr−1 a posteriori increase) and over Venezuela. The TROPOMI observations also reveal many fossil fuel emission hotspots missing from the prior inventory, including over Mexico, Oman, Yemen, Turkmenistan, Iran, Iraq, Libya, and Algeria. Agricultural methane sources are underestimated in India, Brazil, the California Central Valley, and Asia. Overall, anthropogenic sources worldwide are increased by +19 [11–31] Tg yr−1 over the prior estimate. More than 45 % of this adjustment occurs over India and Southeast Asia during the summer monsoon (+8.5 [3.1–10.7] Tg in July–October), likely due to rainfall-enhanced emissions from rice, manure, and landfills/sewers, which increase during this season along with the natural wetland source.
Funder
National Aeronautics and Space Administration U.S. Environmental Protection Agency
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference122 articles.
1. Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., Guerlet, S., Parker, R., Boesch, H., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Sweeney, C., Wofsy, S. C., and Kort, E. A.: Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133, https://doi.org/10.5194/acp-15-113-2015, 2015. 2. Anderson, D. C., Duncan, B. N., Fiore, A. M., Baublitz, C. B., Follette-Cook, M. B., Nicely, J. M., and Wolfe, G. M.: Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers, Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021, 2021. 3. APEI: Canada's air pollutant emissions inventory, https://open.canada.ca/data/en/dataset/fa1c88a8-bf78-4fcb-9c1e-2a5534b92131, 2020 (last access: 3 March 2023). 4. Baker, A. K., Schuck, T. J., Brenninkmeijer, C. A. M., Rauthe-Schöch, A., Slemr, F., van Velthoven, P. F. J., and Lelieveld, J.: Estimating the contribution of monsoon-related biogenic production to methane emissions from South Asia using CARIBIC observations, Geophys. Res. Lett., 39, L10813, https://doi.org/10.1029/2012GL051756, 2012. 5. Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart, J., Espinoza, J. C., and Pattnayak, K. C.: Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation, Sci. Adv., 4, eaat8785, https://doi.org/10.1126/sciadv.aat8785, 2018.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|