Impacts of estimated plume rise on PM2.5 exceedance prediction during extreme wildfire events: a comparison of three schemes (Briggs, Freitas, and Sofiev)
-
Published:2023-03-09
Issue:5
Volume:23
Page:3083-3101
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Li YunyaoORCID, Tong DanielORCID, Ma Siqi, Freitas Saulo R.ORCID, Ahmadov Ravan, Sofiev Mikhail, Zhang Xiaoyang, Kondragunta Shobha, Kahn RalphORCID, Tang YouhuaORCID, Baker Barry, Campbell PatrickORCID, Saylor Rick, Grell Georg, Li Fangjun
Abstract
Abstract. Plume height plays a vital role in wildfire smoke dispersion and the subsequent effects on air quality and human health. In this study, we assess the impact of different plume rise schemes on predicting the dispersion of wildfire air pollution and the exceedances of the National Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM2.5) during the 2020 western United States wildfire season. Three widely used plume rise schemes (Briggs, 1969; Freitas et al., 2007; Sofiev et al., 2012) are compared within the Community Multiscale Air Quality (CMAQ) modeling framework. The plume heights simulated by these schemes are comparable to the aerosol height observed by the Multi-angle Imaging SpectroRadiometer (MISR) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The performance of the simulations with these schemes varies by fire case and weather conditions. On average, simulations with higher plume injection heights predict lower aerosol optical depth (AOD) and surface PM2.5 concentrations near the source region but higher AOD and PM2.5 in downwind regions due to the faster spread of the smoke plume once ejected. The 2-month mean AOD difference caused by different plume rise schemes is approximately 20 %–30 % near the source regions and 5 %–10 % in the downwind regions. Thick smoke blocks sunlight and suppresses photochemical reactions in areas with high AOD. The surface PM2.5 difference reaches 70 % on the West Coast of the USA, and the difference is lower than 15 % in the downwind regions. Moreover, the plume injection height affects pollution exceedance (>35 µg m−3) predictions. Higher plume heights generally produce larger downwind PM2.5 exceedance areas. The PM2.5 exceedance areas predicted by the three schemes largely overlap, suggesting that all schemes perform similarly during large wildfire events when the predicted concentrations are well above the exceedance threshold. At the edges of the smoke plumes, however, there are noticeable differences in the PM2.5 concentration and predicted PM2.5 exceedance region. For the whole period of study, the difference in the total number of exceedance days could be as large as 20 d in northern California and 4 d in the downwind regions. This disagreement among the PM2.5 exceedance forecasts may affect key decision-making regarding early warning of extreme air pollution episodes at local levels during large wildfire events.
Funder
Earth Sciences Division NOAA Weather Program Office
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference68 articles.
1. Ahmadov, R., Grell, G., James, E., Csiszar, I., Tsidulko, M., Pierce,
B., McKeen, S., Benjamin, G., Alexander, C., Pereira, G., Freitas, S., and Goldberg, M.: Using VIIRS Fire Radiative Power data to simulate biomass burning
emissions, plume rise and smoke transport in a real-time air quality
modeling system, Ieee International Geoscience and Remote Sensing Symposium,
IEEE International Symposium on Geoscience and Remote Sensing IGARSS, New
York, Ieee, 2806-8, 2017. 2. Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D. R.: Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, 2013. 3. Amiridis, V., Giannakaki, E., Balis, D. S., Gerasopoulos, E., Pytharoulis, I., Zanis, P., Kazadzis, S., Melas, D., and Zerefos, C.: Smoke injection heights from agricultural burning in Eastern Europe as seen by CALIPSO, Atmos. Chem. Phys., 10, 11567–11576, https://doi.org/10.5194/acp-10-11567-2010, 2010. 4. Archer-Nicholls, S., Lowe, D., Darbyshire, E., Morgan, W. T., Bela, M. M., Pereira, G., Trembath, J., Kaiser, J. W., Longo, K. M., Freitas, S. R., Coe, H., and McFiggans, G.: Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol, Geosci. Model Dev., 8, 549–577, https://doi.org/10.5194/gmd-8-549-2015, 2015. 5. Baek, B. H. and Seppanen, C.: CEMPD/SMOKE: SMOKE v4.7 Public Release (October 2019), Zenodo [code], https://doi.org/10.5281/zenodo.3476744, 2019.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|