Generalization and application of the flux-conservative thermodynamic equations in the AROME model of the ALADIN system

Author:

Degrauwe Daan,Seity Yann,Bouyssel François,Termonia Piet

Abstract

Abstract. General yet compact equations are presented to express the thermodynamic impact of physical parameterizations in a NWP or climate model. By expressing the equations in a flux-conservative formulation, the conservation of mass and energy by the physics parameterizations is a built-in feature of the system. Moreover, the centralization of all thermodynamic calculations guarantees a consistent thermodynamical treatment of the different processes. The generality of this physics–dynamics interface is illustrated by applying it in the AROME NWP model. The physics–dynamics interface of this model currently makes some approximations, which typically consist of neglecting some terms in the total energy budget, such as the transport of heat by falling precipitation, or the effect of diffusive moisture transport. Although these terms are usually quite small, omitting them from the energy budget breaks the constraint of energy conservation. The presented set of equations provides the opportunity to get rid of these approximations, in order to arrive at a consistent and energy-conservative model. A verification in an operational setting shows that the impact on monthly-averaged, domain-wide meteorological scores is quite neutral. However, under specific circumstances, the supposedly small terms may turn out not to be entirely negligible. A detailed study of a case with heavy precipitation shows that the heat transport by precipitation contributes to the formation of a region of relatively cold air near the surface, the so-called cold pool. Given the importance of this cold pool mechanism in the life cycle of convective events, it is advisable not to neglect phenomena that may enhance it.

Publisher

Copernicus GmbH

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3