Delineating incised stream sediment sources within a San Francisco Bay tributary basin

Author:

Bigelow Paul,Benda Lee,Pearce Sarah

Abstract

Abstract. Erosion and sedimentation pose ubiquitous problems for land and watershed managers, requiring delineation of sediment sources and sinks across landscapes. However, the technical complexity of many spatially explicit erosion models precludes their use by practitioners. To address this critical gap, we demonstrate a contemporary use of applied geomorphometry through a straightforward GIS analysis of sediment sources in the San Francisco Bay Area in California, USA, designed to support erosion reduction strategies. Using 2 m lidar digital elevation models, we delineated the entire river network in the Arroyo Mocho watershed (573 km2) at the scale of  ∼  30 m segments and identified incised landforms using a combination of hillslope gradient and planform curvature. Chronic erosion to the channel network was estimated based on these topographic attributes and the size of vegetation, and calibrated to sediment gage data, providing a spatially explicit estimate of sediment yield from incised channels across the basin. Rates of erosion were summarized downstream through the channel network, revealing patterns of sediment supply at the reach scale. Erosion and sediment supply were also aggregated to subbasins, allowing comparative analyses at the scale of tributaries. The erosion patterns delineated using this approach provide land use planners with a robust framework to design erosion reduction strategies. More broadly, the study demonstrates a modern analysis of important geomorphic processes affected by land use that is easily applied by agencies to solve common problems in watersheds, improving the integration between science and environmental management.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3