Optical and physical properties of aerosols in the boundary layer and free troposphere over the Amazon Basin during the biomass burning season

Author:

Chand D.,Guyon P.,Artaxo P.,Schmid O.,Frank G. P.,Rizzo L. V.,Mayol-Bracero O. L.,Gatti L. V.,Andreae M. O.

Abstract

Abstract. As part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) campaign, detailed surface and airborne aerosol measurements were performed over the Amazon Basin during the dry to wet season from 16 September to 14 November 2002. Optical and physical properties of aerosols at the surface, and in the boundary layer (BL) and free troposphere (FT) during the dry season are discussed in this article. Carbon monoxide (CO) is used as a tracer for biomass burning emissions. At the surface, good correlation among the light scattering coefficient (σs at 545 nm), PM2.5, and CO indicates that biomass burning is the main source of aerosols. Accumulation of haze during some of the large-scale biomass burning events led to high PM2.5 (225 μg m−3), σs (1435 Mm−1), aerosol optical depth at 500 nm (3.0), and CO (3000 ppb). A few rainy episodes reduced the PM2.5, number concentration (CN) and CO concentration by two orders of magnitude. The correlation analysis between σs and aerosol optical thickness shows that most of the optically active aerosols are confined to a layer with a scale height of 1617 m during the burning season. This is confirmed by aircraft profiles. The average mass scattering and absorption efficiencies (545 nm) for small particles (diameter Dp<1.5 μm) at surface level are found to be 5.0 and 0.33 m2 g−1, respectively, when relating the aerosol optical properties to PM2.5 aerosols. The observed mean single scattering albedo (ωo at 545 nm) for submicron aerosols at the surface is 0.92±0.02. The light scattering by particles (Δσs/Δ CN) increase 2–10 times from the surface to the FT, most probably due to the combined affects of coagulation and condensation.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3