Forecasting 24 h averaged PM2.5 concentration in the Aburrá Valley using tree-based machine learning models, global forecasts, and satellite information

Author:

Pérez-Carrasquilla Jhayron S.ORCID,Montoya Paola A.,Sánchez Juan Manuel,Hernández K. SantiagoORCID,Ramírez Mauricio

Abstract

Abstract. We develop a framework to forecast 24 h averaged particulate matter (PM2.5) concentrations 4 d in advance in ground-based stations over the metropolitan area of the Aburrá Valley, Colombia. The input variables are gathered from a highly diverse set of sources, including in situ real-time PM2.5 observations, meteorological forecasts from the Global Forecasting System (GFS), aerosol optical depth (AOD) forecasts from the European Copernicus Atmosphere Monitoring Service (CAMS), and the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire products. We compare the performance of two tree-based machine learning (ML) methods, random forests (RFs) and gradient boosting (GB), with linear regression as a baseline for error metrics. One of the disadvantages of tree-based models is their inability to make skillful predictions out of the domain in which the models were trained. To address that problem, we implement piecewise linear regression learners within the models. Additionally, to enhance the performance of the models, we use a customized loss function that considers the probability distribution of the target values. Tree-based models highly outperform the linear regression, with GB showing the best results in most of the 19 stations used in this study. We also test two approaches for the multi-step output problem, a direct multi-output (MO) scheme and a recursive (RC) scheme, with the GB–MO approach showing the best results. According to the performance analysis, the predictability is less for values away from the mean and decreases between 06:00 LT (local time) and the early afternoon, when the expansion of the boundary layer occurs. To contribute to understanding the sources of predictability and uncertainty of air quality in the city, we perform a feature importance analysis revealing that the relevance of the different independent variables is a function of the lead time. Particularly, apart from the past concentrations, the variables that most affect the predictability are the forecasted aerosol optical depth (AOD), the integrated fire radiative power over a forecasted back trajectory (BT-IFRP), and the predicted planetary boundary layer height (PBLH). In the testing period, the models showed the ability to forecast poor-air-quality events in the valley with more than 1 d of anticipation. This study serves as a framework for developing and evaluating the ML-based air quality forecasting models over the Andean region.

Funder

Universidad EAFIT

Publisher

Copernicus GmbH

Subject

Applied Mathematics,Atmospheric Science,Statistics and Probability,Oceanography

Reference71 articles.

1. Ballesteros-González, K., Sullivan, A. P., and Morales-Betancourt, R.: Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model, Sci. Total Environ., 739, 139755, https://doi.org/10.1016/j.scitotenv.2020.139755, 2020. a

2. Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J., Razinger, M., Schulz, M., Serrar, S., Simmons, A. J., Sofiev, M., Suttie, M., Tompkins, A. M., and Untch, A.: Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation, J. Geophys. Res.-Atmos., 114, D06206, https://doi.org/10.1029/2008JD011235, 2009. a

3. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser,J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, 2013. a

4. Breiman, L.: Random forests, Machine Learning, 45, 5–32, 2001. a

5. Chellali, M., Abderrahim, H., Hamou, A., Nebatti, A., and Janovec, J.: Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers, Environ. Sci. Pollut. R., 23, 14008–14017, 2016. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3